Experiments on separation control using flexible self-adaptive hairy-flaps are presented herein. The wake-flow behind a circular cylinder is investigated without and with flexible hairy-flaps at the aft-part of the cylinder. Flow dynamics and hair motion were measured by particle image velocimetry and image processing in a range of Reynolds number 5000 < Re < 31 000. The experiments and POD analysis show, that the hairy-flaps alter the natural vortex separation cycle in such a way that the vortices do not shed in a zig-zag like arrangement as in the classical von Karman vortex street but in line in a row with the cylinder wake axis. Thus, the wake-deficit is largely reduced. Furthermore, flow fluctuations are considerably reduced about 42% in streamwise and 35% in transversal direction compared to the reference case without hairy-flaps, too. The condition for this mode change is the lock-in of the vortex shedding with a traveling wave running through the flexible hair bundles in transversal direction at the aft-part of the cylinder. As a consequence, the vortex shedding frequency is increased, the length of the separation bubble is decreased and drag force is decreased, too. The lock-in appears as a jump-like change of the shedding frequency and a jump in the Strouhal-Reynolds number diagram. However, when the characteristic length for the normalized frequency is chosen as the length of the separation bubble instead of the cylinder diameter, the Str-Re dependence is regular again. This hints on the relevance of the resonator model as proposed by Sigurdson and Roshko (1988) [16] on vortex shedding mechanism when boundary conditions are changed such as in our case, where the hairy-flap bundle imposes a flexible wall with visco-elastic coupling in transversal direction. (C) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.