Multiple periodic solutions of some Lienard equations with p-Laplacian

被引:2
作者
Bereanu, Cristian [1 ]
机构
[1] Univ Catholique Louvain, Dept Math, B-1348 Louvain, Belgium
关键词
p-Laplacian; Lienard equations; periodic solutions; Leray-Schauder degree;
D O I
10.36045/bbms/1210254825
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence, non-existence and multiplicity of solutions to periodic boundary value problems of Lienard type (vertical bar u'vertical bar(p-2)u')' + f(u)u' = g(u) = e(t) + s, u(0) - u(T) = 0 = u'(0) - u'(T), is discussed, where p > 1, f is arbitrary and g is assumed to be bounded, positive and g(+/-infinity) = 0. The function e is continuous on [0,T] with mean value 0 and s is a parameter.
引用
收藏
页码:277 / 285
页数:9
相关论文
共 6 条
[1]  
[Anonymous], 2002, TOPOL METHOD NONL AN, DOI DOI 10.12775/TMNA.2002.014
[2]  
BEREANU C, NODEA NONLI IN PRESS
[3]   Periodic solutions of nonlinear perturbations of φ-Laplacians with possibly bounded φ [J].
Bereanu, Cristian ;
Mawhin, Jean .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (06) :1668-1681
[4]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[5]   Periodic solutions for nonlinear systems with p-Laplacian-like operators [J].
Manasevich, R ;
Mawhin, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 145 (02) :367-393
[6]  
Mawhin J, 2006, J EUR MATH SOC, V8, P375