Equivalence of Sharp Trudinger-Moser Inequalities in Lorentz-Sobolev Spaces

被引:9
作者
Tang, Hanli [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Critical Trudinger-Moser inequality; Subcritical Trudinger-Moser inequalities; Lorentz-Sobolev spaces; Equivalence; EXTREMAL-FUNCTIONS; UNBOUNDED-DOMAINS; EXISTENCE; OPERATORS; EQUATION;
D O I
10.1007/s11118-019-09769-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The critical and subcritical Trudinger-Moser inequalities in Lorentz Sobolev space have been studied by Cassani and Tarsi (Asymptot. Anal.64(1-2):29-51,2009), Lu and Tang (Adv. Nonlinear Stud.16(3):581-601,2016). In this paper, we will prove that these critical and subcritical Trudinger-Moser inequalities are actually equivalent and thus extend those equivalence results of Lam et al. (Rev. Mat. Iberoam33(4):1219-1246,2017) into Lorentz Sobolev spaces.
引用
收藏
页码:297 / 314
页数:18
相关论文
共 31 条
[1]   Trudinger type inequalities in RN and their best exponents [J].
Adachi, S ;
Tanaka, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) :2051-2057
[2]   A SHARP INEQUALITY OF MOSER,J. FOR HIGHER-ORDER DERIVATIVES [J].
ADAMS, DR .
ANNALS OF MATHEMATICS, 1988, 128 (02) :385-398
[3]  
Alvino A, 1996, POTENTIAL ANAL, V5, P273
[4]  
[Anonymous], 2001, ANALYSIS
[5]   NONTRIVIAL SOLUTION OF SEMILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT IN R2 [J].
CAO, DM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (3-4) :407-435
[6]  
CARLESON L, 1986, B SCI MATH, V110, P113
[7]   A Moser-type inequality in Lorentz-Sobolev spaces for unbounded domains in RN [J].
Cassani, Daniele ;
Tarsi, Cristina .
ASYMPTOTIC ANALYSIS, 2009, 64 (1-2) :29-51
[8]   Sharpened Adams Inequality and Ground State Solutions to the Bi-Laplacian Equation in R4 [J].
Chen, Lu ;
Li, Jungang ;
Lu, Guozhen ;
Zhang, Caifeng .
ADVANCED NONLINEAR STUDIES, 2018, 18 (03) :429-452
[9]   Best constants for Moser-Trudinger inequalities on the Heisenberg group [J].
Cohn, WS ;
Lu, GZ .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (04) :1567-1591
[10]  
doO JM., 1997, ABSTR APPL ANAL, V2, P301, DOI DOI 10.1155/S1085337597000419