Pulsed field gradient NMR studies of polymer adsorption on colloidal CdSe quantum dots

被引:37
作者
Shen, Lei [1 ,2 ]
Soong, Ronald [1 ,3 ]
Wang, Mingfeng [1 ]
Lee, Anna [1 ]
Wu, Chi [2 ,4 ]
Scholes, Gregory D. [1 ]
Macdonald, Peter M. [1 ,3 ]
Winnik, Mitchell A. [1 ]
机构
[1] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Toronto, Dept Chem & Phys Sci, Mississauga, ON L5L 1C6, Canada
[4] Chinese Univ Hong Kong, Dept Chem, Shatin, NT, Peoples R China
关键词
D O I
10.1021/jp0768975
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pulsed field gradient nuclear magnetic resonance (PFG NMR) experiments have been used to examine ligand exchange between poly(2-(N,N-dimethylammo)ethyl methacrylate) (PDMA) (M-n = 12000, M-W/M-n = 1.20, N = 78) and trioctylphosphine oxide (TOPO) bound to the surface of CdSe/TOPO quantum dots (QDs). We show that PFG H-1 NMR can quantify the displacement of TOPO by PDMA through its ability to differentiate signals due to TOPO bound to the QDs versus those from TOPO molecules free in solution. For CdSe QDs with a band edge absorption maximum at 558 nm (diameter 2.7 nm by transmission electron microscopy), we determined that, at saturation, 8 polymer chains on average displace greater than 90% of the surface TOPO groups. At partial saturation, with an average of 6 polymer chains/QD, each TOPO displaced requires 28 DMA repeat units. Assuming that one Me2N- group binds to a surface Cd2+ for each TOPO displaced, we infer that only about 3% of the DMA units are directly bound to the surface. The remaining groups are present as loops or tails that protrude into the solvent. and increase the hydrodynamic diameter of the particles.
引用
收藏
页码:1626 / 1633
页数:8
相关论文
共 50 条
[31]   Pseudopotential theory of electronic processes in colloidal CDSE quantum dots. [J].
Califano, M ;
Zunger, A .
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 :U452-U452
[32]   On the excitation wavelength dependence of the luminescence yield of colloidal CdSe quantum dots [J].
Tonti, D ;
van Mourik, F ;
Chergui, M .
NANO LETTERS, 2004, 4 (12) :2483-2487
[33]   Epitaxial Integration of Multiple CdSe Quantum Dots in a Colloidal CdS Nanoplatele [J].
Chen, Dongdong ;
Lei, Hairui ;
Zhu, Chenqi ;
Chen, Xing ;
Tian, He ;
Fang, Wei ;
Qin, Haiyan ;
Peng, Xiaogang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (19) :8444-8448
[34]   SIZE-DEPENDENT PHOTOLUMINESCENCE AND ELECTROLUMINESCENCE OF COLLOIDAL CdSe QUANTUM DOTS [J].
Dey, S. C. ;
Nath, S. S. .
INTERNATIONAL JOURNAL OF NANOSCIENCE, 2013, 12 (02)
[35]   The study of CdSe colloidal quantum dots synthesized in aqueous and organic media [J].
Mikhailov, I. I. ;
Tarasov, S. A. ;
Solomonov, A. V. ;
Aleksandrova, O. A. ;
Matyushkin, L. B. ;
Mazing, D. S. .
16TH RUSSIAN YOUTH CONFERENCE ON PHYSICS AND ASTRONOMY (PHYSICA.SPB/2013), 2014, 572
[36]   Dynamics within the exciton fine structure of colloidal CdSe quantum dots [J].
Huxter, VM ;
Kovalevskij, V ;
Scholes, GD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (43) :20060-20063
[37]   Mid-Infrared Photoluminescence of CdS and CdSe Colloidal Quantum Dots [J].
Jeong, Kwang Seob ;
Guyot-Sionnest, Philippe .
ACS NANO, 2016, 10 (02) :2225-2231
[38]   Colloidal CdSe/ZnS quantum dots as single-photon sources [J].
Brokmann, X ;
Messin, G ;
Desbiolles, P ;
Giacobino, E ;
Dahan, M ;
Hermier, JP .
NEW JOURNAL OF PHYSICS, 2004, 6 :1-8
[39]   Exciton Spin Relaxation in Colloidal CdSe Quantum Dots at Room Temperature [J].
Ma, Hong ;
Jin, Zuanming ;
Zhang, Zhengbing ;
Li, Gaofang ;
Ma, Guohong .
JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (09) :2018-2023
[40]   Colloidal CdTe and CdSe Quantum Dots: Technology of Preparing and Optical Properties [J].
Korbutyak, D. V. ;
Kalytchuk, S. M. ;
Geru, I. I. .
JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2009, 4 (01) :174-179