Pulsed field gradient NMR studies of polymer adsorption on colloidal CdSe quantum dots

被引:37
|
作者
Shen, Lei [1 ,2 ]
Soong, Ronald [1 ,3 ]
Wang, Mingfeng [1 ]
Lee, Anna [1 ]
Wu, Chi [2 ,4 ]
Scholes, Gregory D. [1 ]
Macdonald, Peter M. [1 ,3 ]
Winnik, Mitchell A. [1 ]
机构
[1] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Toronto, Dept Chem & Phys Sci, Mississauga, ON L5L 1C6, Canada
[4] Chinese Univ Hong Kong, Dept Chem, Shatin, NT, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2008年 / 112卷 / 06期
关键词
D O I
10.1021/jp0768975
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pulsed field gradient nuclear magnetic resonance (PFG NMR) experiments have been used to examine ligand exchange between poly(2-(N,N-dimethylammo)ethyl methacrylate) (PDMA) (M-n = 12000, M-W/M-n = 1.20, N = 78) and trioctylphosphine oxide (TOPO) bound to the surface of CdSe/TOPO quantum dots (QDs). We show that PFG H-1 NMR can quantify the displacement of TOPO by PDMA through its ability to differentiate signals due to TOPO bound to the QDs versus those from TOPO molecules free in solution. For CdSe QDs with a band edge absorption maximum at 558 nm (diameter 2.7 nm by transmission electron microscopy), we determined that, at saturation, 8 polymer chains on average displace greater than 90% of the surface TOPO groups. At partial saturation, with an average of 6 polymer chains/QD, each TOPO displaced requires 28 DMA repeat units. Assuming that one Me2N- group binds to a surface Cd2+ for each TOPO displaced, we infer that only about 3% of the DMA units are directly bound to the surface. The remaining groups are present as loops or tails that protrude into the solvent. and increase the hydrodynamic diameter of the particles.
引用
收藏
页码:1626 / 1633
页数:8
相关论文
共 50 条
  • [1] Effect of Electrial Field on Colloidal CdSe/ZnS Quantum Dots
    Wang Zhi-Bing
    Zhang Jia-Yu
    Cui Yi-Ping
    Ye Yong-Hong
    CHINESE PHYSICS LETTERS, 2008, 25 (12) : 4435 - 4438
  • [2] Spectroelectrochemistry of Colloidal CdSe Quantum Dots
    Ashokan, Arun
    Mulvaney, Paul
    CHEMISTRY OF MATERIALS, 2021, 33 (04) : 1353 - 1362
  • [3] Polarization of colloidal CdSe quantum dots
    Liem, Nguyen Quang
    Phuong, Le Quang
    Thuy, Ung Thi Dieu
    Chi, Tran Thi Kim
    Thanh, Do Xuan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 53 (03) : 1570 - 1574
  • [4] Photon echo studies of biexcitons and coherences in colloidal CdSe quantum dots
    Colonna, AE
    Yang, XJ
    Scholes, GD
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2005, 242 (05): : 990 - 1000
  • [5] Observation of solvatochromism in CdSe colloidal quantum dots
    Leatherdale, CA
    Bawendi, MG
    PHYSICAL REVIEW B, 2001, 63 (16)
  • [6] Colorimetrical study of colloidal CdSe quantum dots
    Chen, Ding-An
    Shen, Li
    Zhang, Jia-Yu
    Cui, Yi-Ying
    ACTA PHYSICA SINICA, 2007, 56 (11) : 6340 - 6344
  • [7] Electroluminescent Characteristics of CdSe Colloidal Quantum Dots
    Lou Teng-Gang
    Hu Lian
    Wu Dong-Kai
    Du Ling-Xiao
    Cai Chun-Feng
    Si Jian-Xiao
    Wu Hui-Zhen
    JOURNAL OF INORGANIC MATERIALS, 2012, 27 (11) : 1211 - 1215
  • [8] Electroluminescent characteristics of CdSe colloidal quantum dots
    Lou, Teng-Gang
    Hu, Lian
    Wu, Dong-Kai
    Du, Ling-Xiao
    Cai, Chun-Feng
    Si, Jian-Xiao
    Wu, Hui-Zhen
    Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2012, 27 (11): : 1211 - 1215
  • [9] Optical properties of colloidal CdSe quantum dots
    Dey, S. C.
    Nath, S. S.
    Bhattacherjee, R.
    MICRO & NANO LETTERS, 2011, 6 (03) : 113 - 115
  • [10] Estimating Quantum Dot Size with Pulsed Field Gradient NMR
    Ryswyk, Hal Van
    Porter, Hanna Z.
    Seto, Connor K. M.
    Lopez, Ixchel
    Dy, Emma
    JOURNAL OF CHEMICAL EDUCATION, 2023, 100 (05) : 2021 - 2026