How to Conceptualize Catalytic Cycles? The Energetic Span Model

被引:1537
作者
Kozuch, Sebastian [1 ]
Shaik, Sason [2 ,3 ]
机构
[1] Weizmann Inst Sci, Dept Organ Chem, IL-76100 Rehovot, Israel
[2] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel
[3] Hebrew Univ Jerusalem, Lise Meitner Minerva Ctr Computat Quantum Chem, IL-91904 Jerusalem, Israel
关键词
RATE-LIMITING STEP; COMPLEXES; MECHANISM; ENERGIES; ALKENES;
D O I
10.1021/ar1000956
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A computational study of a catalytic cycle generates state energies (the E-representation), whereas experiments lead to rate constants (the k-representation). Based on transition state theory (TST), these are equivalent representations. Nevertheless, until recently, there has been no simple way to calculate the efficiency of a catalytic cycle, that is, its turnover frequency (TOF), from a theoretically obtained energy profile. In this Account, we introduce the energetic span model that enables one to evaluate TOFs in a straightforward manner and in affinity with the Curtin-Hammett principle. As shown herein, the model implies a change in our kinetic concepts. Analogous to Ohm's law, the catalytic chemical current (the TOF) can be defined by a chemical potential (independent of the mechanism) divided by a chemical resistance (dependent on the mechanism and the nature of the catalyst). This formulation is based on Eyring's TST and corresponds to a steady-state regime. In many catalytic cycles, only one transition state and one intermediate determine the TOF. We call them the TOF-determining transition state (TOTS) and the TOF-determining Intermediate (IDI). These key states can be located, from among the many states available to a catalytic cycle, by assessing the degree of TOF control (X-TOF; this last term resembles the structure reactivity coefficient in classical physical organic chemistry. The TDTS-TDI energy difference and the reaction driving force define the energetic span (delta E) of the cycle. Whenever the TDTS appears after the TDI, delta E is the energy difference between these two states; when the opposite is true, we must also add the driving force to this difference. Having SE, the TOE is expressed simply in the Arrhenius-Eyring fashion, wherein delta E serves as the apparent activation energy of the cycle. An Important lesson from this model Is that neither one transition state nor one reaction step possess all the kinetic information that determines the efficiency of a catalyst. Additionally, the TDI and TOTS are not necessarily the highest and lowest states, nor do they have to be adjoined as a single step. As such, we can conclude that a change in the conceptualization of catalytic cycles is in order: in catalysis, there are no rate-determining steps, but rather rate-determining states. We also include a study on the effect of reactant and product concentrations. In the energetic span approximation, only the reactants or products that are located between the TDI and TOTS accelerate or inhibit the reaction. In this manner, the energetic span model creates a direct link between experimental quantities and theoretical results. The versatility of the energetic span model is demonstrated with several catalytic cycles of organometallic reactions.
引用
收藏
页码:101 / 110
页数:10
相关论文
共 53 条
[1]   Associative transmetalation in the stille cross-coupling reaction to form dienes:: Theoretical insights into the open pathway [J].
Alvarez, Rosana ;
Perez, Martin ;
Faza, Olalla Nieto ;
de Lera, Angel R. .
ORGANOMETALLICS, 2008, 27 (14) :3378-3389
[2]   A density functional theory study of the Stille cross-coupling via associative transmetabolism.: The role of ligands and coordinating solvents [J].
Alvarez, Rosana ;
Faza, Olalla Nieto ;
de Lera, Angel R. ;
Cardenas, Diego J. .
ADVANCED SYNTHESIS & CATALYSIS, 2007, 349 (06) :887-906
[3]   Mechanistic and kinetic studies of palladium catalytic systems [J].
Amatore, C ;
Jutand, A .
JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1999, 576 (1-2) :254-278
[4]   Relative Gibbs energies in solution through continuum models:: Effect of the loss of translational degrees of freedom in bimolecular reactions on Gibbs energy barriers [J].
Ardura, D ;
López, R ;
Sordo, TL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (49) :23618-23623
[5]  
Astruc D., 2007, Organometallic Chemistry and Catalysis
[6]  
Boudart M., 1991, Kinetics of Chemical Processes
[7]   SOME COMMON OVERSIMPLIFICATIONS IN TEACHING CHEMICAL-KINETICS [J].
BOYD, RK .
JOURNAL OF CHEMICAL EDUCATION, 1978, 55 (02) :84-89
[8]   A DFT study of the full catalytic cycle of the Suzuki-Miyaura cross-coupling on a model system [J].
Braga, Ataualpa A. C. ;
Ujaque, Gregori ;
Maseras, Feliu .
ORGANOMETALLICS, 2006, 25 (15) :3647-3658
[9]  
Buchwald SL, 2008, ACCOUNTS CHEM RES, V41, P1439, DOI 10.1021/ar8001798
[10]   Micro- and macro-kinetics: their relationship in heterogeneous catalysis [J].
Campbell, Charles T. .
TOPICS IN CATALYSIS, 1994, 1 (3-4) :353-366