Torque and Angular-Momentum Transfer in Merging Rotating Bose-Einstein Condensates

被引:5
作者
Kanai, Toshiaki [1 ,2 ]
Guo, Wei [1 ,3 ]
Tsubota, Makoto [4 ,5 ,6 ]
Jin, Dafei [7 ]
机构
[1] Natl High Magnet Field Lab, 1800 East Paul Dirac Dr, Tallahassee, FL 32310 USA
[2] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[3] Florida State Univ, Dept Mech Engn, Tallahassee, FL 32310 USA
[4] Osaka City Univ, Dept Phys, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
[5] Osaka City Univ, OCU Adv Res Inst Nat Sci & Technol OCARINA, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
[6] Osaka City Univ, Nambu Yoichiro Inst Theoret & Expt Phys NITEP, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
[7] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
INSTABILITY; TRANSITION; TRANSPORT;
D O I
10.1103/PhysRevLett.124.105302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When rotating classical fluid drops merge together, angular momentum can be advected from one to another due to the viscous shear flow at the drop interface. It remains elusive what the corresponding mechanism is in inviscid quantum fluids such as Bose-Einstein condensates (BECs). Here we report our theoretical study of an initially static BEC merging with a rotating BEC in three-dimensional space along the rotational axis. We show that a solitonlike sheet, resembling a corkscrew, spontaneously emerges at the interface. Rapid angular momentum transfer at a constant rate universally proportional to the initial angular-momentum density is observed. Strikingly, this transfer does not necessarily involve fluid advection or drifting of the quantized vortices. We reveal that the corkscrew structure can exert a torque that directly creates angular momentum in the static BEC and annihilates angular momentum in the rotating BEC. Uncovering this intriguing angular momentum transport mechanism may benefit our understanding of various coherent matter-wave systems, spanning from atomtronics on chips to dark matter BECs at cosmic scales.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Speed of sound in disordered Bose-Einstein condensates
    Gaul, Christopher
    Renner, Nina
    Mueller, Cord Axel
    [J]. PHYSICAL REVIEW A, 2009, 80 (05):
  • [12] Impurity-induced vortex lattice melting and turbulence in rotating Bose-Einstein condensates
    Boral, Rony
    Sarkar, Swarup K.
    Muruganandam, Paulsamy
    Mishra, Pankaj K.
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2025, 58 (01)
  • [13] A two-parameter continuation algorithm for vortex pinning in rotating Bose-Einstein condensates
    Jeng, B. -W.
    Wang, Y. -S.
    Chien, C. -S.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (03) : 493 - 508
  • [14] Decay of hydrodynamic modes in dilute Bose-Einstein condensates
    Gust, Erich D.
    Reichl, L. E.
    [J]. PHYSICAL REVIEW A, 2014, 90 (04):
  • [15] Observation of Bose-Einstein condensates of excitons in a bulk semiconductor
    Morita, Yusuke
    Yoshioka, Kosuke
    Kuwata-Gonokami, Makoto
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [16] Nonlinear waves in coherently coupled Bose-Einstein condensates
    Congy, T.
    Kamchatnov, A. M.
    Pavloff, N.
    [J]. PHYSICAL REVIEW A, 2016, 93 (04)
  • [17] Collective dynamics of vortices in trapped Bose-Einstein condensates
    Simula, Tapio
    [J]. PHYSICAL REVIEW A, 2013, 87 (02):
  • [18] Macroscopic quantum tunneling escape of Bose-Einstein condensates
    Zhao, Xinxin
    Alcala, Diego A.
    McLain, Marie A.
    Maeda, Kenji
    Potnis, Shreyas
    Ramos, Ramon
    Steinberg, Aephraim M.
    Carr, Lincoln D.
    [J]. PHYSICAL REVIEW A, 2017, 96 (06)
  • [19] Heat current control in trapped Bose-Einstein Condensates
    Charalambous, C.
    Garcia-March, M. A.
    Mehboudi, M.
    Lewenstein, M.
    [J]. NEW JOURNAL OF PHYSICS, 2019, 21
  • [20] BOSE-EINSTEIN CONDENSATES IN OPTICAL LATTICES IN THE NONLINEAR REGIME
    Morsch, Oliver
    Arimondo, Ennio
    [J]. NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS, 2005, 153 : 223 - 236