CQR-based inference for the infinite-variance nearly nonstationary autoregressive models

被引:0
作者
Fu, Ke-Ang [1 ]
Ni, Jialin [2 ]
Dong, Yajuan [2 ]
机构
[1] Zhejiang Univ City Coll, Dept Stat, Hangzhou 310015, Peoples R China
[2] Zhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Peoples R China
关键词
asymptotic distribution; composite quantile regression; infinite variance; nearly nonstationary autoregressive model; COMPOSITE QUANTILE REGRESSION; ASYMPTOTIC THEORY; LIMIT-THEOREMS; TIME-SERIES; SELECTION;
D O I
10.1007/s10986-021-09539-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the nearly nonstationary autoregressive model y(t) = q(n)y(t-1)+u(t), where q(n) = 1-c/n, c is a fixed constant, and {u(t), t >= 1} is a sequence of innovations belonging to the domain of attraction of a stable distribution with index 0 < alpha < 2. We construct a composite quantile regression estimator for the autoregressive coefficient and establish the asymptotic distribution of this estimator under some mild conditions.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 23 条