Simultaneous sensing and imaging of individual biomolecular complexes enabled by modular DNA-protein coupling

被引:11
作者
Avellaneda, Mario J. [1 ]
Koers, Eline J. [1 ]
Minde, David P. [1 ,3 ]
Sunderlikova, Vanda [1 ]
Tans, Sander J. [1 ,2 ]
机构
[1] AMOLF, NL-1098XG Amsterdam, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci Delft, Dept Bionanosci, Maasweg 9, NL-2629 HZ Delft, Netherlands
[3] Univ Cambridge, Cambridge Ctr Prote, Cambridge CB2 1QR, England
关键词
SINGLE-MOLECULE FLUORESCENCE; OPTICAL TWEEZERS; FORCE SPECTROSCOPY; PEPTIDE TAG; MANIPULATION; MICROSCOPY; HYBRIDS; TRAP; BOND;
D O I
10.1038/s42004-020-0267-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Many proteins form dynamic complexes with DNA, RNA, and other proteins, which often involves protein conformational changes that are key to function. Yet, methods to probe these critical dynamics are scarce. Here we combine optical tweezers with fluorescence imaging to simultaneously monitor the conformation of individual proteins and their binding to partner proteins. Central is a protein-DNA coupling strategy, which uses exonuclease digestion and partial re-synthesis to generate DNA overhangs of different lengths, and ligation to oligo-labeled proteins. It provides up to 40 times higher coupling yields than existing protocols and enables new fluorescence-tweezers assays, which require particularly long and strong DNA handles. We demonstrate the approach by detecting the emission of a tethered fluorescent protein and of a molecular chaperone (trigger factor) complexed with its client. We conjecture that our strategy will be an important tool to study conformational dynamics within larger biomolecular complexes. The folding and conformational dynamics of proteins can be studied using optical tweezers with the aid of DNA handles. Here this assay is extended to simultaneously visualize the binding of complexing partners while monitoring the induced conformational changes on the protein.
引用
收藏
页数:7
相关论文
共 70 条
  • [1] Ligand binding modulates the mechanical stability of dihydrofolate reductase
    Ainavarapu, RK
    Li, LY
    Badilla, CL
    Fernandez, JM
    [J]. BIOPHYSICAL JOURNAL, 2005, 89 (05) : 3337 - 3344
  • [2] Tying a molecular knot with optical tweezers
    Arai, Y
    Yasuda, R
    Akashi, K
    Harada, Y
    Miyata, H
    Kinosita, K
    Itoh, H
    [J]. NATURE, 1999, 399 (6735) : 446 - 448
  • [3] Single-Molecule Protein Unfolding and Translocation by an ATP-Fueled Proteolytic Machine
    Aubin-Tam, Marie-Eve
    Olivares, Adrian O.
    Sauer, Robert T.
    Baker, Tania A.
    Lang, Matthew J.
    [J]. CELL, 2011, 145 (02) : 257 - 267
  • [4] The chaperone toolbox at the single-molecule level: From clamping to confining
    Avellaneda, Mario J.
    Koers, Eline J.
    Naqvi, Mohsin M.
    Tans, Sander J.
    [J]. PROTEIN SCIENCE, 2017, 26 (07) : 1291 - 1302
  • [5] A folding nucleus and minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy
    Bauer, Daniela
    Meinhold, Sarah
    Jakob, Roman P.
    Stigler, Johannes
    Merkel, Ulrich
    Maier, Timm
    Rief, Matthias
    Zoldak, Gabriel
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (18) : 4666 - 4671
  • [6] Ionic effects on the elasticity of single DNA molecules
    Baumann, CG
    Smith, SB
    Bloomfield, VA
    Bustamante, C
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (12) : 6185 - 6190
  • [7] Direct observation of chaperone-induced changes in a protein folding pathway
    Bechtluft, Philipp
    van Leeuwen, Ruud G. H.
    Tyreman, Matthew
    Tomkiewicz, Danuta
    Nouwen, Nico
    Tepper, Harald L.
    Driessen, Arnold J. M.
    Tans, Sander J.
    [J]. SCIENCE, 2007, 318 (5855) : 1458 - 1461
  • [8] Bennink ML, 1999, CYTOMETRY, V36, P200, DOI 10.1002/(SICI)1097-0320(19990701)36:3<200::AID-CYTO9>3.0.CO
  • [9] 2-T
  • [10] Power spectrum analysis for optical tweezers
    Berg-Sorensen, K
    Flyvbjerg, H
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (03) : 594 - 612