Comparison of neural models, off-line and on-line learning algorithms for a benchmark problem

被引:0
|
作者
Ruano, AEB [1 ]
机构
[1] Univ Algarve, FCT, CSI, P-8000 Faro, Portugal
来源
ARTIFICIAL NEURAL NETS PROBLEM SOLVING METHODS, PT II | 2003年 / 2687卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper compares the application of different neural models multilayer perceptrons, radial basis functions and B-splines - for a benchmark problem, and illustrates the applicability of a common learning algorithm for all models considered. The learning algorithm is employed both for off-line training and for on-line model adaptation. In the latter case, a sliding window of past learning data is employed.
引用
收藏
页码:457 / 464
页数:8
相关论文
共 50 条
  • [1] On-line and off-line models for the rolling process
    Yuen, WYD
    SCANDINAVIAN JOURNAL OF METALLURGY, 2003, 32 (02) : 86 - 93
  • [2] The significance of off-line learning for on-line projects
    Scott, DJ
    ROADBLOCKS ON THE INFORMATION HIGHWAY: THE IT REVOLUTION IN JAPANESE EDUCATION, 2003, : 249 - 264
  • [3] Image compression with on-line and off-line learning
    Simard, PY
    Burges, CJC
    Steinkraus, D
    Malvar, HS
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS, 2003, : 259 - 262
  • [4] Off-line and on-line algorithms for closed string factorization
    Alzamel, Mai
    Iliopoulos, Costas S.
    Smyth, W. F.
    Sung, Wing-Kin
    THEORETICAL COMPUTER SCIENCE, 2019, 792 : 12 - 19
  • [5] Learning off-line vs. on-line models of interactive multimodal behaviors with recurrent neural networks
    Duc-Canh Nguyen
    Bailly, Gerard
    Elisei, Frederic
    PATTERN RECOGNITION LETTERS, 2017, 100 : 29 - 36
  • [6] On-Line and Off-Line Approximation Algorithms for Vector Covering Problems
    N. Alon
    Y. Azar
    J. Csirik
    L. Epstein
    S. V. Sevastianov
    A. P. A. Vestjens
    G. J. Woeginger
    Algorithmica, 1998, 21 : 104 - 118
  • [7] On-line and off-line approximation algorithms for vector covering problems
    Alon, N
    Azar, Y
    Csirik, J
    Epstein, L
    Sevastianov, SV
    Vestjens, APA
    Woeginger, GJ
    ALGORITHMICA, 1998, 21 (01) : 104 - 118
  • [9] Unsupervised learning by examples: On-line versus off-line
    Van den Broeck, C
    THEORETICAL ASPECTS OF NEURAL COMPUTATION: A MULTIDISCIPLINARY PERSPECTIVE, 1998, : 249 - 255
  • [10] Road Detection Based on Off-line and On-line Learning
    Xie, Qi
    Shi, Meiping
    Fu, Hao
    Wu, Tao
    2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (CIT), 2014, : 193 - 197