ON THE QUANTIZATION OF POLYGON SPACES

被引:0
|
作者
Charles, L. [1 ]
机构
[1] Univ Paris 06, Inst Math Jussieu, UMR 7586, F-75005 Paris, France
关键词
Polygon space; Geometric quantization; Toeplitz operators; Lagrangian section; Symplectic reduction; 6j-symbol; Canonical base; TOEPLITZ-OPERATORS; GEOMETRIC-QUANTIZATION; REPRESENTATIONS; MULTIPLICITIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Moduli spaces of polygons have been studied since the nineties for their topological and symplectic properties. Under generic assumptions, these are symplectic manifolds with natural global action-angle coordinates. This paper is concerned with the quantization of these manifolds and of their action coordinates. Applying the geometric quantization procedure, one is lead to consider invariant subspaces of a tensor product of irreducible representations of SU(2). These quantum spaces admit natural sets of commuting observables. We prove that these operators form a semiclassical integrable system, in the sense that they are Toeplitz operators with principal symbol the square of the action coordinates. As a consequence, the quantum spaces admit bases whose vectors concentrate on the Lagrangian submanifolds of constant action. The coefficients of the change of basis matrices can be estimated in terms of geometric quantities. We recover this way the already known asymptotics of the classical 6j-symbols.
引用
收藏
页码:109 / 152
页数:44
相关论文
共 50 条
  • [1] Big Polygon Spaces
    Franz, Matthias
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (24) : 13379 - 13405
  • [2] HYPERSURFACES OF POLYGON SPACES
    Kamiyama, Yasuhiko
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2018, 19 (01): : 51 - 59
  • [3] The cohomology ring of polygon spaces
    Hausmann, JC
    Knutson, A
    ANNALES DE L INSTITUT FOURIER, 1998, 48 (01) : 281 - +
  • [4] The homology of singular polygon spaces
    Kamiyama, Y
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (03): : 581 - 594
  • [5] Homology of planar polygon spaces
    M. Farber
    D. Schütz
    Geometriae Dedicata, 2007, 125 : 75 - 92
  • [6] ON THE GROMOV WIDTH OF POLYGON SPACES
    ALESSIA MANDINI
    MILENA PABINIAK
    Transformation Groups, 2018, 23 : 149 - 183
  • [7] INTERSECTION NUMBERS OF POLYGON SPACES
    Agapito, Jose
    Godinho, Leonor
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (09) : 4969 - 4997
  • [8] Homology of planar polygon spaces
    Farber, M.
    Schutz, D.
    GEOMETRIAE DEDICATA, 2007, 125 (01) : 75 - 92
  • [9] ON THE GROMOV WIDTH OF POLYGON SPACES
    Mandini, Alessia
    Pabiniak, Milena
    TRANSFORMATION GROUPS, 2018, 23 (01) : 149 - 183
  • [10] TOPOLOGICAL COMPLEXITY OF SPATIAL POLYGON SPACES
    Davis, Donald M.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (08) : 3643 - 3645