The design of reversible hydrogels to capture extracellular matrix dynamics

被引:616
作者
Rosales, Adrianne M. [1 ]
Anseth, Kristi S. [1 ,2 ]
机构
[1] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80303 USA
[2] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80303 USA
基金
美国国家科学基金会;
关键词
HYALURONIC-ACID HYDROGELS; MAGNETIC-RESONANCE ELASTOGRAPHY; SHEAR-THINNING HYDROGELS; CELL-ADHESION; SUPRAMOLECULAR HYDROGELS; PROTEIN HYDROGELS; CROSS-LINKING; PEG HYDROGELS; GROWTH-FACTOR; PROTEOLYTIC DEGRADATION;
D O I
10.1038/natrevmats.2015.12
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The extracellular matrix (ECM) is a dynamic environment that constantly provides physical and chemical cues to embedded cells. Much progress has been made in engineering hydrogels that can mimic the ECM, but hydrogel properties are, in general, static. To recapitulate the dynamic nature of the ECM, many reversible chemistries have been incorporated into hydrogels to regulate cell spreading, biochemical ligand presentation and matrix mechanics. For example, emerging trends include the use of molecular photoswitches or biomolecule hybridization to control polymer chain conformation, thereby enabling the modulation of the hydrogel between two states on demand. In addition, many non-covalent, dynamic chemical bonds have found increasing use as hydrogel crosslinkers or tethers for cell signalling molecules. These reversible chemistries will provide greater temporal control of adhered cell behaviour, and they allow for more advanced in vitro models and tissue-engineering scaffolds to direct cell fate.
引用
收藏
页数:15
相关论文
共 176 条
[91]   Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment [J].
Mabry, Kelly M. ;
Lawrence, Rosa L. ;
Anseth, Kristi S. .
BIOMATERIALS, 2015, 49 :47-56
[92]   Magnetic resonance elastography: Non-invasive mapping of tissue elasticity [J].
Manduca, A ;
Oliphant, TE ;
Dresner, MA ;
Mahowald, JL ;
Kruse, SA ;
Amromin, E ;
Felmlee, JP ;
Greenleaf, JF ;
Ehman, RL .
MEDICAL IMAGE ANALYSIS, 2001, 5 (04) :237-254
[93]   The 12th-14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain [J].
Martino, Mikael M. ;
Hubbell, Jeffrey A. .
FASEB JOURNAL, 2010, 24 (12) :4711-4721
[94]   Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment [J].
McBeath, R ;
Pirone, DM ;
Nelson, CM ;
Bhadriraju, K ;
Chen, CS .
DEVELOPMENTAL CELL, 2004, 6 (04) :483-495
[95]   Affinity Peptides Protect Transforming Growth Factor Beta During Encapsulation in Poly(ethylene glycol) Hydrogels [J].
McCall, Joshua D. ;
Lin, Chien-Chi ;
Anseth, Kristi S. .
BIOMACROMOLECULES, 2011, 12 (04) :1051-1057
[96]   Measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels [J].
McKinnon, D. D. ;
Domaille, D. W. ;
Brown, T. E. ;
Kyburz, K. A. ;
Kiyotake, E. ;
Cha, J. N. ;
Anseth, K. S. .
SOFT MATTER, 2014, 10 (46) :9230-9236
[97]   Bis-Aliphatic Hydrazone-Linked Hydrogels Form Most Rapidly at Physiological pH: Identifying the Origin of Hydrogel Properties with Small Molecule Kinetic Studies [J].
McKinnon, Daniel D. ;
Domaille, Dylan W. ;
Cha, Jennifer N. ;
Anseth, Kristi S. .
CHEMISTRY OF MATERIALS, 2014, 26 (07) :2382-2387
[98]   Biophysically Defined and Cytocompatible Covalently Adaptable Networks as Viscoelastic 3D Cell Culture Systems [J].
McKinnon, Daniel D. ;
Domaille, Dylan W. ;
Cha, Jennifer N. ;
Anseth, Kristi S. .
ADVANCED MATERIALS, 2014, 26 (06) :865-872
[99]   Imaging in systems biology [J].
Megason, Sean G. ;
Fraser, Scott E. .
CELL, 2007, 130 (05) :784-795
[100]   Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel [J].
Metters, AT ;
Anseth, KS ;
Bowman, CN .
POLYMER, 2000, 41 (11) :3993-4004