Caterpillar arboricity of planar graphs

被引:14
作者
Goncalves, D. [1 ]
机构
[1] Univ Bordeaux 1, LaBRI, UMR 5800, F-33405 Talence, France
关键词
arboricity; caterpillar; planar graphs;
D O I
10.1016/j.disc.2005.12.055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We solve a conjecture of Roditty, Shoham and Yuster [P.J. Cameron (Ed.), Problems from the 17th British Combinatorial Conference, Discrete Math., 231 (2001) 469-478; Y. Roditty, B. Shoham, R. Yuster, Monotone paths in edge-ordered sparse graphs, Discrete Math. 226 (2001) 411-417] on the caterpillar arboricity of planar graphs. We prove that for every planar graph G = (V, E), the edge set E can be partitioned into four subsets (E-i) (1 <= i <= 4) in such a way that G[E-i], for 1 <= i <= 4, is a forest of caterpillars. We also provide a linear-time algorithm which constructs for a given planar graph G, four forests of caterpillars covering the edges of G. (c) 2006 Published by Elsevier B.V.
引用
收藏
页码:2112 / 2121
页数:10
相关论文
共 9 条
[1]   ACYCLIC COLORINGS OF PLANAR GRAPHS [J].
BORODIN, OV .
DISCRETE MATHEMATICS, 1979, 25 (03) :211-236
[2]  
CAMERON PJ, 2001, DISCRETE MATH, V231, P469
[3]  
GONCALVES D, P ICGT 05
[4]  
GYARFAS A, 1995, C NUMER, V109, P109
[5]   Star arboricity of graphs [J].
Hakimi, SL ;
Mitchem, J ;
Schmeichel, E .
DISCRETE MATHEMATICS, 1996, 149 (1-3) :93-98
[6]   EFFICIENT PLANARITY TESTING [J].
HOPCROFT, J ;
TARJAN, R .
JOURNAL OF THE ACM, 1974, 21 (04) :549-568
[7]  
NashWilliams C. St. J. A., 1964, Journal of the London Mathematical Society, V1, P12
[8]   Monotone paths in edge-ordered sparse graphs [J].
Roditty, Y ;
Shoham, B ;
Yuster, R .
DISCRETE MATHEMATICS, 2001, 226 (1-3) :411-417
[9]   THE INTERVAL NUMBER OF A PLANAR GRAPH - 3 INTERVALS SUFFICE [J].
SCHEINERMAN, ER ;
WEST, DB .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 35 (03) :224-239