GLOBAL STABILITY OF TRAVELING WAVES FOR A SPATIALLY DISCRETE DIFFUSION SYSTEM WITH TIME DELAY

被引:3
作者
Liu, Ting [1 ]
ZHANG, GUO-BAO [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2021年 / 29卷 / 04期
关键词
Spatially discrete diffusion system; traveling waves; global stability; weighted energy method; the Fourier transform; ASYMPTOTIC STABILITY; EXPONENTIAL STABILITY; EQUATIONS; FRONTS; EXISTENCE; OSCILLATIONS;
D O I
10.3934/era.2021003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article deals with the global stability of traveling waves of a spatially discrete diffusion system with time delay and without quasi-monotonicity. Using the Fourier transform and the weighted energy method with a suitably selected weighted function, we prove that the monotone or non-monotone traveling waves are exponentially stable in L-infinity(R) x L-infinity(R) with the exponential convergence rate e(-mu t) for some constant mu > 0.
引用
收藏
页码:2599 / 2618
页数:20
相关论文
共 50 条
[41]   GLOBAL EXPONENTIAL STABILITY OF BISTABLE TRAVELING WAVES IN A REACTION-DIFFUSION SYSTEM WITH CUBIC NONLINEARITY [J].
Zhang, Tingting ;
Li, Wenxiu ;
Han, Yazhou ;
Ma, Manjun .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (07) :2215-2232
[42]   Global stability of non-monotone traveling wave solutions for a nonlocal dispersal equation with time delay [J].
Zhang, Guo-Bao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (01) :605-627
[43]   GLOBAL ASYMPTOTIC STABILITY OF TRAVELING WAVES TO THE ALLEN-CAHN EQUATION WITH A FRACTIONAL LAPLACIAN [J].
Ma, Luyi ;
Niu, Hong-Tao ;
Wang, Zhi-Cheng .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (05) :2457-2472
[44]   Traveling waves for time-delayed reaction diffusion equations with degenerate diffusion [J].
Xu, Tianyuan ;
Ji, Shanming ;
Mei, Ming ;
Yin, Jingxue .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (09) :4442-4485
[45]   On uniqueness of traveling waves for a reaction diffusion equation with spatio-temporal delay [J].
Xu, Zhaoquan ;
Xiao, Dongmei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 291 :195-219
[46]   GLOBAL STABILITY OF CRITICAL TRAVELING WAVES WITH OSCILLATIONS FOR TIME-DELAYED REACTION-DIFFUSION EQUATIONS [J].
Mei, Ming ;
Zhang, Kaijun ;
Zhang, Qifeng .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (03) :375-397
[47]   Stability of traveling wavefronts for a discrete diffusive Lotka-Volterra competition system [J].
Tian, Ge ;
Zhang, Guo-Bao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 447 (01) :222-242
[48]   TIME PERIODIC TRAVELING WAVES FOR A PERIODIC NONLOCAL DISPERSAL MODEL WITH DELAY [J].
Wu, Shi-Liang ;
Huang, Ming-di .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (10) :4405-4421
[49]   Stability and uniqueness of traveling waves for a discrete bistable 3-species competition system [J].
Guo, Jong-Shenq ;
Nakamura, Ken-Ichi ;
Ogiwara, Toshiko ;
Wu, Chin-Chin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (02) :1534-1550
[50]   Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability [J].
Wu, Shi-Liang ;
Zhao, Hai-Qin ;
Liu, San-Yang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (03) :377-397