GLOBAL STABILITY OF TRAVELING WAVES FOR A SPATIALLY DISCRETE DIFFUSION SYSTEM WITH TIME DELAY

被引:2
作者
Liu, Ting [1 ]
ZHANG, GUO-BAO [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2021年 / 29卷 / 04期
关键词
Spatially discrete diffusion system; traveling waves; global stability; weighted energy method; the Fourier transform; ASYMPTOTIC STABILITY; EXPONENTIAL STABILITY; EQUATIONS; FRONTS; EXISTENCE; OSCILLATIONS;
D O I
10.3934/era.2021003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article deals with the global stability of traveling waves of a spatially discrete diffusion system with time delay and without quasi-monotonicity. Using the Fourier transform and the weighted energy method with a suitably selected weighted function, we prove that the monotone or non-monotone traveling waves are exponentially stable in L-infinity(R) x L-infinity(R) with the exponential convergence rate e(-mu t) for some constant mu > 0.
引用
收藏
页码:2599 / 2618
页数:20
相关论文
共 50 条
  • [21] Traveling waves for a Lotka-Volterra competition system with diffusion
    Yu, Zhi-Xian
    Yuan, Rong
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (5-6) : 1035 - 1043
  • [22] Existence and Stability of Traveling Waves for Degenerate Reaction–Diffusion Equation with Time Delay
    Rui Huang
    Chunhua Jin
    Ming Mei
    Jingxue Yin
    Journal of Nonlinear Science, 2018, 28 : 1011 - 1042
  • [23] Impact of nonlocal dispersal and time periodicity on the global exponential stability of bistable traveling waves
    Ma, Manjun
    Meng, Wentao
    Ou, Chunhua
    STUDIES IN APPLIED MATHEMATICS, 2023, 150 (03) : 818 - 840
  • [24] TRAVELING WAVES AND THEIR STABILITY IN A COUPLED REACTION DIFFUSION SYSTEM
    Hou, Xiaojie
    Feng, Wei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (01) : 141 - 160
  • [25] Existence and stability of traveling waves for doubly degenerate diffusion equations
    Huang, Rui
    Liang, Zhanghua
    Wang, Zhuangzhuang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [26] STABILITY OF TRAVELING WAVES IN A POPULATION DYNAMIC MODEL WITH DELAY AND QUIESCENT STAGE
    Zhou, Yonghui
    Yang, Yunrui
    Liu, Kepan
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (03) : 1001 - 1024
  • [27] Exponential stability of traveling fronts in a diffusion epidemic system with delay
    Yang, Yun-Rui
    Li, Wan-Tong
    Wu, Shi-Liang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (02) : 1223 - 1234
  • [28] GLOBAL STABILITY OF TRAVELING WAVEFRONTS FOR NONLOCAL REACTION-DIFFUSION EQUATIONS WITH TIME DELAY
    杨兆星
    张国宝
    Acta Mathematica Scientia, 2018, (01) : 289 - 302
  • [29] Computation of traveling waves for spatially discrete bistable reaction-diffusion equations
    Elmer, CE
    VanVleck, ES
    APPLIED NUMERICAL MATHEMATICS, 1996, 20 (1-2) : 157 - 169
  • [30] Stability of traveling waves in a population dynamics model with spatio-temporal delay
    Yang, Yun-Rui
    Liu, Li
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 132 : 183 - 195