GLOBAL STABILITY OF TRAVELING WAVES FOR A SPATIALLY DISCRETE DIFFUSION SYSTEM WITH TIME DELAY

被引:3
作者
Liu, Ting [1 ]
ZHANG, GUO-BAO [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2021年 / 29卷 / 04期
关键词
Spatially discrete diffusion system; traveling waves; global stability; weighted energy method; the Fourier transform; ASYMPTOTIC STABILITY; EXPONENTIAL STABILITY; EQUATIONS; FRONTS; EXISTENCE; OSCILLATIONS;
D O I
10.3934/era.2021003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article deals with the global stability of traveling waves of a spatially discrete diffusion system with time delay and without quasi-monotonicity. Using the Fourier transform and the weighted energy method with a suitably selected weighted function, we prove that the monotone or non-monotone traveling waves are exponentially stable in L-infinity(R) x L-infinity(R) with the exponential convergence rate e(-mu t) for some constant mu > 0.
引用
收藏
页码:2599 / 2618
页数:20
相关论文
共 50 条
[21]   Existence and stability of traveling waves for a nonlocal time-delayed degenerate diffusion equation [J].
Huang, Rui ;
Wang, Liangwei ;
Wang, Zhuangzhuang .
APPLICABLE ANALYSIS, 2025,
[22]   Traveling waves for a Lotka-Volterra competition system with diffusion [J].
Yu, Zhi-Xian ;
Yuan, Rong .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (5-6) :1035-1043
[23]   Existence and Stability of Traveling Waves for Degenerate Reaction–Diffusion Equation with Time Delay [J].
Rui Huang ;
Chunhua Jin ;
Ming Mei ;
Jingxue Yin .
Journal of Nonlinear Science, 2018, 28 :1011-1042
[24]   Impact of nonlocal dispersal and time periodicity on the global exponential stability of bistable traveling waves [J].
Ma, Manjun ;
Meng, Wentao ;
Ou, Chunhua .
STUDIES IN APPLIED MATHEMATICS, 2023, 150 (03) :818-840
[25]   TRAVELING WAVES AND THEIR STABILITY IN A COUPLED REACTION DIFFUSION SYSTEM [J].
Hou, Xiaojie ;
Feng, Wei .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (01) :141-160
[26]   Existence and stability of traveling waves for doubly degenerate diffusion equations [J].
Huang, Rui ;
Liang, Zhanghua ;
Wang, Zhuangzhuang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02)
[27]   STABILITY OF TRAVELING WAVES IN A POPULATION DYNAMIC MODEL WITH DELAY AND QUIESCENT STAGE [J].
Zhou, Yonghui ;
Yang, Yunrui ;
Liu, Kepan .
ACTA MATHEMATICA SCIENTIA, 2018, 38 (03) :1001-1024
[28]   Exponential stability of traveling fronts in a diffusion epidemic system with delay [J].
Yang, Yun-Rui ;
Li, Wan-Tong ;
Wu, Shi-Liang .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (02) :1223-1234
[29]   GLOBAL STABILITY OF TRAVELING WAVEFRONTS FOR NONLOCAL REACTION-DIFFUSION EQUATIONS WITH TIME DELAY [J].
杨兆星 ;
张国宝 .
Acta Mathematica Scientia, 2018, (01) :289-302
[30]   Computation of traveling waves for spatially discrete bistable reaction-diffusion equations [J].
Elmer, CE ;
VanVleck, ES .
APPLIED NUMERICAL MATHEMATICS, 1996, 20 (1-2) :157-169