Interactive Attention Sampling Network for Clinical Skin Disease Image Classification

被引:3
作者
Chen, Xulin [1 ]
Li, Dong [1 ]
Zhang, Yun [1 ]
Jian, Muwei [2 ,3 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou, Peoples R China
[2] Linyi Univ, Sch Informat Sci & Engn, Linyi, Shandong, Peoples R China
[3] Shandong Univ Finance & Econ, Sch Comp Sci & Technol, Jinan, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION,, PT III | 2021年 / 13021卷
基金
中国国家自然科学基金;
关键词
Clinical skin disease images classification; Class activation maps; Interactive attention; Non-uniform sampling; Interactive Attention Sampling Network (IASN);
D O I
10.1007/978-3-030-88010-1_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skin disease is one of the global burdens of disease, and affects around 30% to 70% individuals worldwide. Effective automatic diagnosis is indispensable for doctors and patients. Compared with dermoscopic imaging, using clinical images captured by a portable electronic device (e.g. a mobile phone) is more available and low-cost. However, the existing large clinical skin-disease image datasets do not have the spatial annotation information, thus posing challenges for localizing the skin-disease regions and learning detailed features. To address the problem, we propose the Interactive Attention Sampling Network (IASN) which automatically localizes the target skin-disease regions and highlight the regions into high resolution. Specifically, the top-K local peaks of the class activation maps are collected, which indicate the key clues of skin-disease images. Then the features of the local peaks are interacted with the features of the surrounding context. With the guidance of the interactive attention maps, the non-uniform sampled images are generated, which facilitate the model to learn more discriminative features. Experimental results demonstrate that the proposed IASN outperforms the state-of-the-art methods on the SD-198 benchmark dataset.
引用
收藏
页码:398 / 410
页数:13
相关论文
共 15 条
[1]   Selective Sparse Sampling for Fine-grained Image Recognition [J].
Ding, Yao ;
Zhou, Yanzhao ;
Zhu, Yi ;
Ye, Qixiang ;
Jiao, Jianbin .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6598-6607
[2]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[3]  
Jaderberg M, 2016, Arxiv, DOI arXiv:1506.02025
[4]   The burden of skin disease in the United States [J].
Lim, Henry W. ;
Collins, Scott A. B. ;
Resneck, Jack S., Jr. ;
Bolognia, Jean L. ;
Hodge, Julie A. ;
Rohrer, Thomas A. ;
Van Beek, Marta J. ;
Margolis, David J. ;
Sober, Arthur J. ;
Weinstock, Martin A. ;
Nerenz, David R. ;
Begolka, Wendy Smith ;
Moyano, Jose V. .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2017, 76 (05) :958-+
[5]  
Lin JY, 2019, CHIN CONTR CONF, P8606, DOI [10.23919/ChiCC.2019.8866611, 10.23919/chicc.2019.8866611]
[6]  
Mnih V, 2014, ADV NEUR IN, V27
[7]   Learning to Zoom: A Saliency-Based Sampling Layer for Neural Networks [J].
Recasens, Adria ;
Kellnhofer, Petr ;
Stent, Simon ;
Matusik, Wojciech ;
Torralba, Antonio .
COMPUTER VISION - ECCV 2018, PT IX, 2018, 11213 :52-67
[8]   The dynamic representation of scenes [J].
Rensink, RA .
VISUAL COGNITION, 2000, 7 (1-3) :17-42
[9]  
Sermanet Pierre, 2015, ICLR WORKSH
[10]   A Benchmark for Automatic Visual Classification of Clinical Skin Disease Images [J].
Sun, Xiaoxiao ;
Yang, Jufeng ;
Sun, Ming ;
Wang, Kai .
COMPUTER VISION - ECCV 2016, PT VI, 2016, 9910 :206-222