Some remarks on planar Boussinesq equations

被引:1
作者
Cai, Xiao-jing [1 ,2 ]
Xue, Chun-yan [3 ]
Li, Xian-jin [4 ]
Liu, Ying [5 ]
Jiu, Quan-sen [6 ]
机构
[1] Beijing Technol & Business Univ, Dept Math, Beijing 100048, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[3] Beijing Informat Sci & Technol Univ, Dept Math, Beijing 100101, Peoples R China
[4] Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China
[5] Acad Armored Force Engn, Fundamental Dept, Beijing 100072, Peoples R China
[6] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Boussinesq equations; classical solutions; Schauder fixed-point theorem; NAVIER-STOKES;
D O I
10.1007/s10255-012-0167-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to prove the well-posedness of the two-dimensional Boussinesq equations when the initial vorticity omega (0) a L (1)(R (2)) (or the finite Radon measure space). Using the stream function form of the equations and the Schauder fixed-point theorem to get the new proof of these results, we get that when the initial vorticity is smooth, there exists a unique classical solutions for the Cauchy problem of the two dimensional Boussinesq equations.
引用
收藏
页码:525 / 534
页数:10
相关论文
共 12 条
[1]  
[Anonymous], 2001, The Navier-Stokes equations. An elementary functional analytic approach
[2]  
Ben-Artzi M., HDB MATH FLUID DYNAM
[3]   GLOBAL-SOLUTIONS OF 2-DIMENSIONAL NAVIER-STOKES AND EULER EQUATIONS [J].
BENARTZI, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (04) :329-358
[4]   Local existence and blow-up criterion of Holder continuous solutions of the Boussinesq equations [J].
Chae, D ;
Kim, SK ;
Nam, HS .
NAGOYA MATHEMATICAL JOURNAL, 1999, 155 :55-80
[5]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[6]  
Kagei Y., 1993, DIFFERENTIAL INTEGRA, V6, P587
[8]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[9]  
Lions P. L., 1996, OXFORD LECT SERIES M, V10
[10]   WEAK SOLUTIONS OF NAVIER-STOKES EQUATIONS [J].
MASUDA, K .
TOHOKU MATHEMATICAL JOURNAL, 1984, 36 (04) :623-646