Dynamics of nonequilibrium Dicke models

被引:173
作者
Bhaseen, M. J. [1 ]
Mayoh, J. [2 ]
Simons, B. D. [1 ]
Keeling, J. [2 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[2] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
来源
PHYSICAL REVIEW A | 2012年 / 85卷 / 01期
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
BODY APPROXIMATION METHODS; SUPERRADIANT PHASE-TRANSITION; BOSE-EINSTEIN CONDENSATION; COLLECTIVE ATOMIC RECOIL; SELF-ORGANIZATION; SOLVABLE MODEL; QUANTUM; CAVITY; FIELD; VALIDITY;
D O I
10.1103/PhysRevA.85.013817
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Motivated by experiments observing self-organization of cold atoms in optical cavities, we investigate the collective dynamics of the associated nonequilibrium Dicke model. The model displays a rich semiclassical phase diagram of long-time attractors including distinct superradiant fixed points, bistable and multistable coexistence phases, and regimes of persistent oscillations. We explore the intrinsic time scales for reaching these asymptotic states and discuss the implications for finite-duration experiments. On the basis of a semiclassical analysis of the effective Dicke model, we find that sweep measurements over 200 ms may be required in order to access the asymptotic regime. We briefly comment on the corrections that may arise due to quantum fluctuations and states outside of the effective two-level Dicke model description.
引用
收藏
页数:25
相关论文
共 86 条
[61]   Probing quantum phases of ultracold atoms in optical lattices by transmission spectra in cavity quantum electrodynamics [J].
Mekhov, Igor B. ;
Maschler, Christoph ;
Ritsch, Helmut .
NATURE PHYSICS, 2007, 3 (05) :319-323
[62]   VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL .2. LINEARIZATION PROCEDURES [J].
MESHKOV, N ;
GLICK, AJ ;
LIPKIN, HJ .
NUCLEAR PHYSICS, 1965, 62 (02) :199-&
[63]   Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential [J].
Milburn, GJ ;
Corney, J ;
Wright, EM ;
Walls, DF .
PHYSICAL REVIEW A, 1997, 55 (06) :4318-4324
[64]   Collective spin systems in dispersive optical cavity QED: Quantum phase transitions and entanglement [J].
Morrison, S. ;
Parkins, A. S. .
PHYSICAL REVIEW A, 2008, 77 (04)
[65]   Self-organization of a Bose-Einstein condensate in an optical cavity [J].
Nagy, D. ;
Szirmai, G. ;
Domokos, P. .
EUROPEAN PHYSICAL JOURNAL D, 2008, 48 (01) :127-137
[66]   Self-organization of a laser-driven cold gas in a ring cavity [J].
Nagy, D ;
Asbóth, JK ;
Domokos, P ;
Ritsch, H .
EUROPHYSICS LETTERS, 2006, 74 (02) :254-260
[67]   Critical exponent of a quantum-noise-driven phase transition: The open-system Dicke model [J].
Nagy, D. ;
Szirmai, G. ;
Domokos, P. .
PHYSICAL REVIEW A, 2011, 84 (04)
[68]   Dicke-Model Phase Transition in the Quantum Motion of a Bose-Einstein Condensate in an Optical Cavity [J].
Nagy, D. ;
Konya, G. ;
Szirmai, G. ;
Domokos, P. .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[69]   No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED [J].
Nataf, Pierre ;
Ciuti, Cristiano .
NATURE COMMUNICATIONS, 2010, 1
[70]   Kinetic theory of cavity cooling and self-organisation of a cold gas [J].
Niedenzu, W. ;
Griesser, T. ;
Ritsch, H. .
EPL, 2011, 96 (04)