Stability Analysis of Distributed Order Fractional Differential Equations

被引:32
作者
Najafi, H. Saberi [1 ]
Sheikhani, A. Refahi [1 ]
Ansari, A. [2 ]
机构
[1] Univ Guilan, Fac Math Sci, Dept Appl Math, Rasht, Iran
[2] Shahrekord Univ, Fac Sci, Dept Math, Shahrekord, Iran
关键词
SMALLEST LARGEST EIGENVALUES; VECTOR ITERATION METHOD; IONOSPHERE SYSTEM; DIFFUSION; CALCULUS; CHAOS; MODEL; PAIR;
D O I
10.1155/2011/175323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the stability of three classes of distributed order fractional differential equations (DOFDEs) with respect to the nonnegative density function. In this sense, we discover a robust stability condition for these systems based on characteristic function and new inertia concept of a matrix with respect to the density function. Moreover, we check the stability of a distributed order fractional WINDMI system to illustrate the validity of proposed procedure.
引用
收藏
页数:12
相关论文
共 35 条
[1]   SOLVING PARTIAL FRACTIONAL DIFFERENTIAL EQUATIONS USING THE L-A -TRANSFORM [J].
Aghili, A. ;
Ansari, A. .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2010, 3 (02) :209-220
[2]   Special Issue: Fractional Derivatives and their Applications - Introduction [J].
Agrawal, OP ;
Machado, JAT ;
Sabatier, J .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :1-2
[3]  
[Anonymous], 1999, MATH SCI ENG
[4]  
[Anonymous], 2006, Journal of the Electrochemical Society
[5]  
Bagley R., 2000, INT J APPL MATH, V2, P965
[6]  
Bagley R. L., 2000, Int. J. Appl. Math, V2, P865
[7]   The inverse Laplace transform of some analytic functions with an application to the eternal solutions of the Boltzmann equation [J].
Bobylev, AV ;
Cercignani, C .
APPLIED MATHEMATICS LETTERS, 2002, 15 (07) :807-813
[8]   Fractional differential equations as alternative models to nonlinear differential equations [J].
Bonilla, B. ;
Rivero, M. ;
Rodriguez-Germa, L. ;
Trujillo, J. J. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) :79-88
[9]  
BUTZER P., 2000, INTRO FRACTIONAL CAL
[10]  
Caputo M., 1969, Elasticita e dissipazione