On-board radiometric calibration for thermal emission band of FY-3C/MERSI

被引:6
作者
Liu, Q. S. [1 ]
Tang, Y. H. [1 ]
Qin, L. [2 ]
Dai, H. S. [3 ]
Zhao, Q. C. [3 ]
Yang, Y. [3 ]
机构
[1] Xian Univ Technol, Sch Sci, Xian, Shaanxi, Peoples R China
[2] Yangtze Normal Univ, Res Ctr Ecoenvironm Monitoring Hazard Prevent & M, Chongqing, Peoples R China
[3] Shanghai Inst Satellites Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
CHANNELS; TERRA;
D O I
10.1080/01431161.2017.1339929
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
On-board radiometric calibration is the most efficient method to improve the measurement accuracy of satellite-borne sensors. Chinese Medium Resolution Spectral Imager (MERSI), loaded on the Fengyun-3C (FY-3C) satellite, uses one satellite-borne fixed-temperature blackbody (BB) for its thermal emission band's (TEB) radiometric calibration, but its optimal calibration algorithm is not determined. By using MERSI's on-board calibration data taken on November 2013, this article investigates two algorithms of linear and semi-nonlinear calibration for MERSI TEB's on-board radiometric calibration and finds that the linear calibration is more reasonable than semi-nonlinear calibration because linear coefficients' variation tendency can reflect MERSI's inherent systematic properties better. The relative difference between linear properties and inherent properties for pixel variability being 9.5%, mirror-side variability being 21.5% and scan variability being 17.8% are all smaller than those between semi-nonlinear case and inherent case. All of those suggest that the linear calibration is coincident with the inherent systematic properties. By using MERSI's calibration data at June 2014, the performance of those two algorithms is validated by comparing the difference between inferred BB radiance L-I and standard BB radiance L-S (0.01%), and between inferred BB brightness temperature T-I and standard BB temperature T-S (0.25 K).
引用
收藏
页码:1 / 14
页数:14
相关论文
共 22 条
  • [1] Landsat TM and ETM+ thermal band calibration
    Barsi, JA
    Schott, JR
    Palluconi, FD
    Heider, DL
    Hook, SJ
    Markham, BL
    Chander, G
    O'Donnell, EM
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2003, 29 (02) : 141 - 153
  • [2] COMPARISON OF INFRARED 11μm WINDOW CHANNELS FOR MEDIUM RESOLUTION SPECTRAL IMAGER AND VISIBLE AND INFRARED RADIOMETER ON FY-3 METEOROLOGY SATELLITE
    Bi Yan-Meng
    Yang Zhong-Dong
    Lu Qi-Feng
    Zheng Zhao-Jun
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2009, 28 (05) : 330 - 334
  • [3] Satellite systems for atmospheric ozone observations
    Cracknell, A. P.
    Varotsos, C. A.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (15) : 5566 - 5597
  • [4] Calibration of space-multispectral imaging sensors: A review
    Dinguirard, M
    Slater, PN
    [J]. REMOTE SENSING OF ENVIRONMENT, 1999, 68 (03) : 194 - 205
  • [5] Guenther B, 1996, J ATMOS OCEAN TECH, V13, P274, DOI 10.1175/1520-0426(1996)013<0274:MCABRO>2.0.CO
  • [6] 2
  • [7] Han Q. J., 2013, SPACECRAFT RECOVERY, V34, P57
  • [8] Vicarious radiometric calibration of a multispectral sensor from an aerial trike applied to precision agriculture
    Herrero-Huerta, Monica
    Hernandez-Lopez, David
    Rodriguez-Gonzalvez, Pablo
    Gonzalez-Aguilera, Diego
    Gonzalez-Piqueras, Jose
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2014, 108 : 28 - 38
  • [9] FY-3A multi-detector radiometric calibration for infrared band of medium resolution spectral imager
    Hu X.-Q.
    Zhang L.-Y.
    Zheng Z.-J.
    Zhang Y.
    Sun L.
    Ding L.
    Huang X.-X.
    [J]. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2010, 18 (09): : 1972 - 1980
  • [10] Jimenez-Muozy C. J., 2003, J GEOPHYS RES, V108, P176