BIFURCATIONS OF LIMIT CYCLES CREATED BY A MULTIPLE NILPOTENT CRITICAL POINT OF PLANAR DYNAMICAL SYSTEMS

被引:16
作者
Liu, Yirong [1 ]
Li, Jibin [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Kunming Univ Sci & Technol, Sch Sci, Kunming 650093, Yunnan, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2011年 / 21卷 / 02期
基金
中国国家自然科学基金;
关键词
Planar dynamical system; nilpotent critical point; bifurcation of limit cycle; multiple critical point; Lyapunov constant;
D O I
10.1142/S0218127411028544
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Bifurcations of limit cycles created from a multiple critical point of planar dynamical systems are studied. It is different from the usual Hopf bifurcations of limit cycles created from an elementary critical point. This bifurcation phenomena depends on the stability of the multiple critical point and the multiple number of the critical point. As an example, a cubic system which can created four small amplitude limit cycles from the origin (a multiple critical point) is given.
引用
收藏
页码:497 / 504
页数:8
相关论文
共 7 条
[1]   Generating limit cycles from a nilpotent critical point via normal forms [J].
Alvarez, MJ ;
Gasull, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (01) :271-287
[2]   Monodromy and stability for nilpotent critical points [J].
Alvarez, MJ ;
Gasull, A .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (04) :1253-1265
[3]  
[Anonymous], TRANSL MATH MONOGRAP
[4]  
Liu Y., 1999, J CENT SOUTH UNIV T, V30, P622
[5]   NEW STUDY ON THE CENTER PROBLEM AND BIFURCATIONS OF LIMIT CYCLES FOR THE LYAPUNOV SYSTEM (I) [J].
Liu, Yirong ;
Li, Jibin .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (11) :3791-3801
[6]   NEW STUDY ON THE CENTER PROBLEM AND BIFURCATIONS OF LIMIT CYCLES FOR THE LYAPUNOV SYSTEM (II) [J].
Liu, Yirong ;
Li, Jibin .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (09) :3087-3099
[7]  
Moussu R., 1982, ERGOD THEOR DYN SYST, V2, P241, DOI DOI 10.1017/S0143385700001553