EIGENVALUE LOCALIZATION FOR COMPLEX MATRICES

被引:0
作者
Gumus, Ibrahim Halil [1 ]
Hirzallah, Omar [2 ]
Kittaneh, Fuad [3 ]
机构
[1] Adiyaman Univ, Fac Art & Sci, Dept Math, Adiyaman, Turkey
[2] Hashemite Univ, Dept Math, Zarqa, Jordan
[3] Univ Jordan, Dept Math, Amman, Jordan
关键词
Eigenvalue; Localization; Frobenius norm; Trace; Spread; Normal matrix;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an n x n complex matrix with n >= 3. It is shown that at least n - 2 of the eigenvalues of A lie in the disk vertical bar z - tr A/n vertical bar <= root n-1/n(root(parallel to A parallel to(2)(2) - vertical bar trA vertical bar(2)/n)(2) - parallel to A*A-AA*parallel to(2)(2) - spd(2)(A)/2), where parallel to A parallel to(2) , tr A, and spd(A) denote the Frobenius norm, the trace, and the spread of A, respectively. In particular, if A = [a(ij)] is normal, then at least n - 2 of the eigenvalues of A lie in the disk vertical bar z - tr A/n vertical bar <=root n - 1/n(parallel to A parallel to(2)(2)/2 - vertical bar tr A vertical bar(2)/n - 3/2 (i,j-1,...,n)max (Sigma(k=1) (n)(k not equal i)vertical bar a(ki)vertical bar(2) + Sigma(k=1) (n)(k not equal j) vertical bar a(kj)vertical bar(2) + vertical bar a(ii) - a(jj)vertical bar(2))). Moreover, the constant 3/2 can be replaced by 4 if the matrix A is Hermitian.
引用
收藏
页码:892 / 906
页数:15
相关论文
共 8 条
[1]   Characterizations and lower bounds for the spread of a normal matrix [J].
Merikoski, JK ;
Kumar, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 364 :13-31
[2]   INEQUALITIES FOR NORMAL AND HERMITIAN MATRICES [J].
MIRSKY, L .
DUKE MATHEMATICAL JOURNAL, 1957, 24 (04) :591-599
[3]  
Mirsky L., 1965, Mathematika, P127, DOI [10.1112/S0025579300001790, DOI 10.1112/S0025579300001790]
[4]   NEW EIGENVALUE ESTIMATES FOR COMPLEX MATRICES [J].
ROJO, O ;
SOTO, RL ;
ROJO, H .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 25 (03) :91-97
[5]  
ROJO O., 1992, PROYECCIONES-ANTOFAG, V11, P11
[6]  
Sargolzaei P., 2011, APPL MATH SCI, V5, P1857
[7]   EIGENVALUE ESTIMATES FOR SYMMETRIC-MATRICES [J].
TARAZAGA, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 135 :171-179
[8]  
Zhan X., 2002, LECT NOTES MATH, V1790