Fekete points and convergence towards equilibrium measures on complex manifolds

被引:76
作者
Berman, Robert [1 ,2 ]
Boucksom, Sebastien [3 ]
Nystrom, David Witt [1 ,2 ]
机构
[1] Chalmers Univ Technol, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, Dept Math, SE-41296 Gothenburg, Sweden
[3] Univ Paris 06, CNRS, Inst Math, FR-75251 Paris 05, France
关键词
BERGMAN KERNELS; LINE BUNDLES; INTERPOLATION; POLYNOMIALS; CURVES; NODES;
D O I
10.1007/s11511-011-0067-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building on [BB1] we prove a general criterion for convergence of (possibly singular) Bergman measures towards pluripotential-theoretic equilibrium measures on complex manifolds. The criterion may be formulated in terms of the growth properties of the unit-balls of certain norms on holomorphic sections, or equivalently as an asymptotic minimization property for generalized Donaldson L-functionals. Our result settles in particular a well-known conjecture in pluripotential theory concerning the equidistribution of Fekete points and it gives the convergence of Bergman measures towards the equilibrium measure for Bernstein-Markov measures. Applications to interpolation of holomorphic sections are also discussed.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 37 条
[1]  
[Anonymous], 2000, ORTHOGONAL POLYNOMIA
[2]  
[Anonymous], 1997, LOGARITHMIC POTENTIA, DOI DOI 10.1007/978-3-662-03329-6
[3]  
[Anonymous], 1988, ANN FAC SCI TOULOUSE
[4]   FINE TOPOLOGY, SILOV BOUNDARY, AND (DDC)N [J].
BEDFORD, E ;
TAYLOR, BA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 72 (02) :225-251
[5]   Determinantal Processes and Independence [J].
Ben Hough, J. ;
Krishnapur, Manjunath ;
Peres, Yuval ;
Virag, Balint .
PROBABILITY SURVEYS, 2006, 3 :206-229
[6]  
BERMAN R, 2008, ARXIV08070035MATHCV
[7]  
BERMAN R. J., 2009, ARXIV09074490MATHCV
[8]  
BERMAN R. J., 2008, ARXIV08052846MATHCV
[9]   Growth of balls of holomorphic sections and energy at equilibrium [J].
Berman, Robert ;
Boucksom, Sebastien .
INVENTIONES MATHEMATICAE, 2010, 181 (02) :337-394
[10]   BERGMAN KERNELS AND EQUILIBRIUM MEASURES FOR LINE BUNDLES OVER PROJECTIVE MANIFOLDS [J].
Berman, Robert J. .
AMERICAN JOURNAL OF MATHEMATICS, 2009, 131 (05) :1485-1524