Transient spectral events in resting state MEG predict individual task responses

被引:15
作者
Becker, R. [1 ]
Vidaurre, D. [1 ]
Quinn, A. J. [1 ]
Abeysuriya, R. G. [1 ]
Jones, O. Parker [2 ]
Jbabdi, S. [2 ]
Woolrich, M. W. [1 ]
机构
[1] Univ Oxford, Oxford Ctr Human Brain Act, Wellcome Ctr Integrat Neuroimaging, OHBA, Oxford, England
[2] Univ Oxford, Wellcome Ctr Integrat Neuroimaging, Nuffield Dept Clin Neurosci, FMRIB, Oxford, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
HUMAN CONNECTOME PROJECT; EEG-ALPHA; BRAIN; CONNECTIVITY; VARIABILITY; DYNAMICS; RHYTHMS;
D O I
10.1016/j.neuroimage.2020.116818
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Even in response to simple tasks such as hand movement, human brain activity shows remarkable inter-subject variability. Recently, it has been shown that individual spatial variability in fMRI task responses can be predicted from measurements collected at rest; suggesting that the spatial variability is a stable feature, inherent to the individual's brain. However, it is not clear if this is also true for individual variability in the spatio-spectral content of oscillatory brain activity. Here, we show using MEG (N ​= ​89) that we can predict the spatial and spectral content of an individual's task response using features estimated from the individual's resting MEG data. This works by learning when transient spectral ‘bursts’ or events in the resting state tend to reoccur in the task responses. We applied our method to motor, working memory and language comprehension tasks. All task conditions were predicted significantly above chance. Finally, we found a systematic relationship between genetic similarity (e.g. unrelated subjects vs. twins) and predictability. Our approach can predict individual differences in brain activity and suggests a link between transient spectral events in task and rest that can be captured at the level of individuals. © 2020
引用
收藏
页数:10
相关论文
共 40 条
[1]   A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks [J].
Abeysuriya, Romesh G. ;
Hadida, Jonathan ;
Sotiropoulos, Stamatios N. ;
Jbabdi, Saad ;
Becker, Robert ;
Hunt, Benjamin A. E. ;
Brookes, Matthew J. ;
Woolrich, Mark W. .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (02)
[2]   Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses [J].
Arieli, A ;
Sterkin, A ;
Grinvald, A ;
Aertsen, A .
SCIENCE, 1996, 273 (5283) :1868-1871
[3]   Fast transient networks in spontaneous human brain activity [J].
Baker, Adam P. ;
Brookes, Matthew J. ;
Rezek, Iead A. ;
Smith, Stephen M. ;
Behrens, Timothy ;
Smith, Penny J. Probert ;
Woolrich, Mark .
ELIFE, 2014, 3
[4]   Influence of ongoing alpha rhythm on the visual evoked potential [J].
Becker, Robert ;
Ritter, Petra ;
Villringer, Arno .
NEUROIMAGE, 2008, 39 (02) :707-716
[5]   Left temporal alpha-band activity reflects single word intelligibility [J].
Becker, Robert ;
Pefkou, Maria ;
Michel, Christoph M. ;
Hervais-Adelman, Alexis G. .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2013, 7
[6]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[7]   The Phase of Ongoing EEG Oscillations Predicts Visual Perception [J].
Busch, Niko A. ;
Dubois, Julien ;
VanRullen, Rufin .
JOURNAL OF NEUROSCIENCE, 2009, 29 (24) :7869-7876
[8]   A symmetric multivariate leakage correction for MEG connectomes [J].
Colclough, G. L. ;
Brookes, M. J. ;
Smith, S. M. ;
Woolrich, M. W. .
NEUROIMAGE, 2015, 117 :439-448
[9]   The heritability of multi-modal connectivity in human brain activity [J].
Colclough, Giles L. ;
Smith, Stephen M. ;
Nichols, Thomas E. ;
Winkler, Anderson M. ;
Sotiropoulos, Stamatios N. ;
Glasser, Matthew F. ;
Van Essen, David C. ;
Woolrich, Mark W. .
ELIFE, 2017, 6
[10]   Activity flow over resting-state networks shapes cognitive task activations [J].
Cole, Michael W. ;
Ito, Takuya ;
Bassett, Danielle S. ;
Schultz, Douglas H. .
NATURE NEUROSCIENCE, 2016, 19 (12) :1718-1726