The high-pressure phase of alumina and implications for Earth's D" layer

被引:104
作者
Oganov, AR
Ono, S
机构
[1] ETH Honggerberg, Crystallog Lab, Dept Mat, CH-8093 Zurich, Switzerland
[2] Japan Agcy Marine Earth Sci & Technol, Yokosuka, Kanagawa 2370061, Japan
关键词
ab initio; CaIrO3; type; Al2O3; phase diagram; density-functional perturbation theory;
D O I
10.1073/pnas.0501800102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Using ab initio simulations and high-pressure experiments in a diamond anvil cell, we show that alumina (Al2O3) adopts the CalrO(3)-type structure above 130 GPa. This finding substantially changes the picture of high-pressure behavior of alumina; in particular, we find that perovskite structure is never stable for Al2O3 at zero Kelvin. The CalrO(3)-type phase suggests a reinterpretation of previous shock-wave experiments and has important implications for the use of alumina as a window material in shock-wave experiments. In particular, the conditions of the stability of this phase correspond to those at which shock-wave experiments indicated an increase of the electrical conductivity. If this increase is caused by high ionic mobility in the CalrO(3)-type phase of Al2O3, similar effect can be expected in the isostructural postperovskite phase of MgSiO3 (which is the dominant mineral phase in the Earth's D" layer). The effect of the incorporation of Al on the perovskite/postperovskite transition of MgSiO3 is discussed.
引用
收藏
页码:10828 / 10831
页数:4
相关论文
共 37 条
[1]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[2]   Prediction of a new phase transition in Al2O3 at high pressures -: art. no. L06303 [J].
Caracas, R ;
Cohen, RE .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (06) :1-4
[3]   Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity [J].
Constable, S ;
Constable, C .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2004, 5
[4]  
CYNN H, 1990, AM MINERAL, V75, P439
[5]   HIGH-PRESSURE SINGLE-CRYSTAL STRUCTURE DETERMINATIONS FOR RUBY UP TO 90-KBAR USING AN AUTOMATIC DIFFRACTOMETER [J].
DAMOUR, H ;
SCHIFERL, D ;
DENNER, W ;
SCHULZ, H ;
HOLZAPFEL, WB .
JOURNAL OF APPLIED PHYSICS, 1978, 49 (08) :4411-4416
[6]   Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of Earth's mantle [J].
Dubrovinsky, L ;
Dubrovinskaia, N ;
Langenhorst, F ;
Dobson, D ;
Rubie, D ;
Gessmann, C ;
Abrikosov, IA ;
Johansson, B ;
Baykov, VI ;
Vitos, L ;
Le Bihan, T ;
Crichton, WA ;
Dmitriev, V ;
Weber, HP .
NATURE, 2003, 422 (6927) :58-61
[7]   High-pressure transformation of Al2O3 [J].
Funamori, N ;
Jeanloz, R .
SCIENCE, 1997, 278 (5340) :1109-1111
[8]   First-principles computation of material properties: the ABINIT software project [J].
Gonze, X ;
Beuken, JM ;
Caracas, R ;
Detraux, F ;
Fuchs, M ;
Rignanese, GM ;
Sindic, L ;
Verstraete, M ;
Zerah, G ;
Jollet, F ;
Torrent, M ;
Roy, A ;
Mikami, M ;
Ghosez, P ;
Raty, JY ;
Allan, DC .
COMPUTATIONAL MATERIALS SCIENCE, 2002, 25 (03) :478-492
[9]   The evidence for the occurrence of two successive transitions in Al2O3 from the analysis of Hugoniot data [J].
Hama, J ;
Suito, K .
HIGH TEMPERATURES-HIGH PRESSURES, 2002, 34 (03) :323-334
[10]  
Jamieson JC, 1982, HIGH PRESSURE RES GE, P27, DOI DOI 10.1007/978-94-009-7867-63