The space of left-invariant metrics on a Lie group up to isometry and scaling

被引:30
作者
Kodama, Hiroshi [1 ]
Takahara, Atsushi [1 ]
Tamaru, Hiroshi [1 ]
机构
[1] Hiroshima Univ, Dept Math, Higashihiroshima 7398526, Japan
关键词
CURVATURES; ALGEBRAS;
D O I
10.1007/s00229-010-0419-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the spaces of left-invariant Riemannian metrics on a Lie group up to isometry, and up to isometry and scaling. In this paper, we see that such spaces can be identified with the orbit spaces of certain isometric actions on noncompact symmetric spaces. We also study some Lie groups whose spaces of left-invariant metrics up to isometry and scaling are small.
引用
收藏
页码:229 / 243
页数:15
相关论文
共 16 条
[1]  
[Anonymous], 2001, DIFFERENTIAL GEOMETR
[2]  
[Anonymous], CHAPMAN HALL CRC RES
[3]  
Berndt J, 2003, J DIFFER GEOM, V63, P1
[4]  
Besse A., 1987, ERGEB MATH, V10
[5]  
Chow B., 2004, Mathematical Surveys and Monographs, V110
[6]   Left invariant metrics and curvatures on simply connected three-dimensional Lie groups [J].
Ha, Ku Yong ;
Lee, Jong Bum .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (06) :868-898
[7]  
Knapp A. W., Progress in Mathematics, V140
[8]  
KOBAYASHI S, 1996, FDN DIFFERENTIAL GEO, V2
[9]   Degenerations of Lie algebras and geometry of Lie groups [J].
Lauret, J .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2003, 18 (02) :177-194
[10]  
Lauret J, 2009, CONTEMP MATH, V491, P1