A Hybrid Data-Driven Approach for Multistep Ahead Prediction of State of Health and Remaining Useful Life of Lithium-Ion Batteries

被引:16
作者
Ali, Muhammad Umair [1 ]
Zafar, Amad [2 ]
Masood, Haris [3 ]
Kallu, Karam Dad [4 ]
Khan, Muhammad Attique [5 ]
Tariq, Usman [6 ]
Kim, Ye Jin [7 ]
Chang, Byoungchol [8 ]
机构
[1] Sejong Univ, Dept Unmanned Vehicle Engn, Seoul 05006, South Korea
[2] Ibadat Int Univ, Dept Elect Engn, Islamabad 54590, Pakistan
[3] Univ Wah, Dept Elect Engn, Wah Cantt, Pakistan
[4] Natl Univ Sci & Technol NUST, Sch Mech & Mfg Engn SMME, H-12, Islamabad, Pakistan
[5] HITEC Univ, Dept Comp Sci, Taxila, Pakistan
[6] Prince Sattam Bin Abdulaziz Univ, Coll Comp Engn & Sci, Al Kharj, Saudi Arabia
[7] Hanyang Univ, Dept Comp Sci, Seoul 04763, South Korea
[8] Hanyang Univ, Ctr Computat Social Sci, Seoul 04763, South Korea
关键词
GAUSSIAN PROCESS REGRESSION; CYCLE-LIFE; CAPACITY FADE; MODEL; OPTIMIZATION; PROGNOSTICS; CALENDAR;
D O I
10.1155/2022/1575303
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a novel multistep ahead predictor based upon a fusion of kernel recursive least square (KRLS) and Gaussian process regression (GPR) is proposed for the accurate prediction of the state of health (SoH) and remaining useful life (RUL) of lithium-ion batteries. The empirical mode decomposition is utilized to divide the battery capacity into local regeneration (intrinsic mode functions) and global degradation (residual). The KRLS and GPR submodels are employed to track the residual and intrinsic mode functions. For RUL, the KRLS predicted residual signal is utilized. The online available experimental battery aging data are used for the evaluation of the proposed model. The comparison analysis with other methodologies (i.e., GPR, KRLS, empirical mode decomposition with GPR, and empirical mode decomposition with KRLS) reveals the distinctiveness and superiority of the proposed approach. For 1-step ahead prediction, the proposed method tracks the trajectory with the root mean square error (RMSE) of 0.2299, and the increase of only 0.2243 RMSE is noted for 30-step ahead prediction. The RUL prediction using residual signal shows an increase of 3 to 5% in accuracy. This proposed methodology is a prospective approach for an efficient battery health prognostic.
引用
收藏
页数:14
相关论文
共 62 条
[1]   An adaptive state of charge estimator for lithium-ion batteries [J].
Ali, Muhammad U. ;
Khan, Hafiz F. ;
Masood, Haris ;
Kallu, Karam D. ;
Ibrahim, Malik M. ;
Zafar, Amad ;
Oh, Semin ;
Kim, Sangil .
ENERGY SCIENCE & ENGINEERING, 2022, 10 (07) :2333-2347
[2]   Kernel recursive least square tracker and long-short term memory ensemble based battery health prognostic model [J].
Ali, Muhammad Umair ;
Kallu, Karam Dad ;
Masood, Haris ;
Niazi, Kamran Ali Khan ;
Alvi, Muhammad Junaid ;
Ghafoor, Usman ;
Zafar, Amad .
ISCIENCE, 2021, 24 (11)
[3]   Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features [J].
Ali, Muhammad Umair ;
Zafar, Amad ;
Nengroo, Sarvar Hussain ;
Hussain, Sadam ;
Park, Gwan-Soo ;
Kim, Hee-Je .
ENERGIES, 2019, 12 (22)
[4]   Effect of Sensors Sensitivity on Lithium-Ion Battery Modeled Parameters and State of Charge: A Comparative Study [J].
Ali, Muhammad Umair ;
Zafar, Amad ;
Nengroo, Sarvar Hussain ;
Hussain, Sadam ;
Kim, Hee-Je .
ELECTRONICS, 2019, 8 (06)
[5]   Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation [J].
Ali, Muhammad Umair ;
Zafar, Amad ;
Nengroo, Sarvar Hussain ;
Hussain, Sadam ;
Alvi, Muhammad Junaid ;
Kim, Hee-Je .
ENERGIES, 2019, 12 (03)
[6]   An Online Data-Driven Model Identification and Adaptive State of Charge Estimation Approach for Lithium-ion-Batteries Using the Lagrange Multiplier Method [J].
Ali, Muhammad Umair ;
Kamran, Muhammad Ahmad ;
Kumar, Pandiyan Sathish ;
Himanshu ;
Nengroo, Sarvar Hussain ;
Khan, Muhammad Adil ;
Hussain, Altaf ;
Kim, Hee-Je .
ENERGIES, 2018, 11 (11)
[7]   Degradation diagnostics for lithium ion cells [J].
Birkl, Christoph R. ;
Roberts, Matthew R. ;
McTurk, Euan ;
Bruce, Peter G. ;
Howey, David A. .
JOURNAL OF POWER SOURCES, 2017, 341 :373-386
[8]   An accelerated calendar and cycle life study of Li-ion cells [J].
Bloom, I ;
Cole, BW ;
Sohn, JJ ;
Jones, SA ;
Polzin, EG ;
Battaglia, VS ;
Henriksen, GL ;
Motloch, C ;
Richardson, R ;
Unkelhaeuser, T ;
Ingersoll, D ;
Case, HL .
JOURNAL OF POWER SOURCES, 2001, 101 (02) :238-247
[9]   System Identification Via Sparse Multiple Kernel-Based Regularization Using Sequential Convex Optimization Techniques [J].
Chen, Tianshi ;
Andersen, Martin S. ;
Ljung, Lennart ;
Chiuso, Alessandro ;
Pillonetto, Gianluigi .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (11) :2933-2945
[10]   The kernel recursive least-squares algorithm [J].
Engel, Y ;
Mannor, S ;
Meir, R .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (08) :2275-2285