The virtual element method for an obstacle problem of a Kirchhoff-Love plate

被引:8
作者
Feng, Fang [1 ]
Han, Weimin [2 ]
Huang, Jianguo [3 ,4 ]
机构
[1] East China Normal Univ, Sch Math Sci, Shanghai Key Lab Pure Math & Math Practice, Shanghai 200241, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[3] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, MOE LSC, Shanghai 200240, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2021年 / 103卷
关键词
Virtual element method; Obstacle problem; Fourth-order variational inequality of the first kind; Error estimate; STOKES PROBLEM; INEQUALITIES;
D O I
10.1016/j.cnsns.2021.106008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the numerical solution of a fourth-order elliptic variational inequality of the first kind by the virtual element method (VEM). The variational inequality models an obstacle problem for the Kirchhoff-Love plate. Both conforming and fully nonconforming VEMs are studied to solve the fourth-order elliptic variational inequality. Optimal order error estimates are derived in the discrete energy norm, under certain solution regularity assumptions. The primal-dual active algorithm is applied to solve the discrete problems. Numerical examples are reported to show the performance of the numerical methods and to illustrate the convergence orders of the numerical solutions. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 48 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]   The conforming virtual element method for polyharmonic problems [J].
Antonietti, P. F. ;
Manzini, G. ;
Verani, M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (07) :2021-2034
[3]   The fully nonconforming virtual element method for biharmonic problems [J].
Antonietti, P. F. ;
Manzini, G. ;
Verani, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (02) :387-407
[4]   Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem [J].
Artioli, E. ;
da Veiga, L. Beirao ;
Lovadina, C. ;
Sacco, E. .
COMPUTATIONAL MECHANICS, 2017, 60 (03) :355-377
[5]   Poincare-Friedrichs inequalities for piecewise H2 functions [J].
Brenner, SC ;
Wang, KN ;
Zhao, M .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (5-6) :463-478
[6]   A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates [J].
Brenner, Susanne C. ;
Sung, Li-yeng ;
Zhang, Hongchao ;
Zhang, Yi .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 254 :31-42
[7]   A QUADRATIC C0 INTERIOR PENALTY METHOD FOR THE DISPLACEMENT OBSTACLE PROBLEM OF CLAMPED KIRCHHOFF PLATES [J].
Brenner, Susanne C. ;
Sung, Li-Yeng ;
Zhang, Hongchao ;
Zhang, Yi .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) :3329-3350
[8]   FINITE ELEMENT METHODS FOR THE DISPLACEMENT OBSTACLE PROBLEM OF CLAMPED PLATES [J].
Brenner, Susanne C. ;
Sung, Li-Yeng ;
Zhang, Yi .
MATHEMATICS OF COMPUTATION, 2012, 81 (279) :1247-1262
[9]   Virtual Element Methods for plate bending problems [J].
Brezzi, Franco ;
Marini, L. Donatella .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 253 :455-462
[10]   Conforming and nonconforming virtual element methods for elliptic problems [J].
Cangiani, Andrea ;
Manzini, Gianmarco ;
Sutton, Oliver J. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) :1317-1354