Robust ego-motion estimation and 3D model revinement using depth based parallax model

被引:0
|
作者
Agrawal, AK [1 ]
Chellappa, R [1 ]
机构
[1] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
来源
ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5 | 2004年
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present all iterative algorithm for robustly estimating the egomotion and refining and updating a coarse, noisy and partial depth map using a depth based parallax model and brightness derivatives extracted from all image pair. Given a coarse, noisy and partial depth map acquired by a range-finder or obtained front a Digital Elevation Map (DEM), we first estimate the coo-motion by combining a global ego-motion constraint and a local brightness constancy constraint. Using the estimated camera motion and the available depth map estimate. motion of the 3D points is compensated. We utilize the fact that the resulting surface parallax field is an epipolar field and knowing its direction from the previous Motion estimates. estimate its Magnitude and use it to refine the depth map estimate. Instead of assuming a smooth parallax field or locally smooth depth models, we locally model the parallax magnitude using the depth map. formulate the problem as a generalized eigen-value analysis and obtain better results. In addition, confidence measures for depth estimates are provided which call be used to remove regions with potentially incorrect (and Outliers in) depth estimates for robustly estimating ego-motion in the next iteration. Results on both synthetic and real examples are presented.
引用
收藏
页码:2483 / 2486
页数:4
相关论文
共 50 条
  • [1] Robust ego-motion estimation and 3-D model refinement using surface parallax
    Agrawal, A
    Chellappa, R
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (05) : 1215 - 1225
  • [2] Regularised Energy Model for Robust Monocular Ego-motion Estimation
    Chien, Hsiang-Jen
    Klette, Reinhard
    PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2017), VOL 6, 2017, : 361 - 368
  • [3] Robust Stereo Visual Odometry Based on Probabilistic Decoupling Ego-Motion Estimation and 3D SSC
    Wang, Yan
    Miao, Hui-Qi
    Guo, Lei
    IEEE ACCESS, 2019, 7 : 1952 - 1961
  • [4] Robust Tracking in Aerial Imagery Based on an Ego-Motion Bayesian Model
    del Blanco, Carlos R.
    Jaureguizar, Fernando
    Garcia, Narciso
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2010,
  • [5] Robust Tracking in Aerial Imagery Based on an Ego-Motion Bayesian Model
    CarlosR del Blanco
    Fernando Jaureguizar
    Narciso García
    EURASIP Journal on Advances in Signal Processing, 2010
  • [6] Model-based Ego-Motion and Vehicle Parameter Estimation using Visual Odometry
    Weydert, Marc
    2012 16TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (MELECON), 2012, : 914 - 919
  • [7] Accurate and Robust Ego-Motion Estimation using Expectation Maximization
    Dubbelman, Gijs
    van der Mark, Wannes
    Groen, Frans C. A.
    2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, : 3914 - +
  • [8] Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints
    Mahjourian, Reza
    Wicke, Martin
    Angelova, Anelia
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5667 - 5675
  • [9] Improved Accuracy for 3D Ego-motion Estimation using Automotive FMCW MIMO radar
    Yuan, Sen
    Wang, Dingyang
    Fioranelli, Francesco
    Yarovoy, Alexander
    2024 IEEE RADAR CONFERENCE, RADARCONF 2024, 2024,
  • [10] Neuro-Evolutive System for Ego-Motion Estimation with a 3D Camera
    Villaverde, Ivan
    Echegoyen, Zelmar
    Grana, Manuel
    ADVANCES IN NEURO-INFORMATION PROCESSING, PT I, 2009, 5506 : 1021 - 1028