Contact manifolds and dissipation, classical and quantum

被引:43
作者
Ciaglia, F. M. [1 ]
Cruz, H. [2 ]
Marmo, G. [3 ,4 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[2] JW Goethe Univ Frankfurt Main, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany
[3] Univ Napoli Federico II, Dipartimento Fis Ettore Pancini, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
[4] INFN, Sez Napoli, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
关键词
Contact manifold; Dissipation; Nonlinear Schrodinger equation; Lagrangian mechanics; Hamiltonian mechanics; General linear group; GKLS equation; INVERSE PROBLEM; TIME-EVOLUTION; MECHANICS; SYSTEMS; GEOMETRY;
D O I
10.1016/j.aop.2018.09.012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by a geometric decomposition of the vector field associated with the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) equation for finite-level open quantum systems, we propose a generalization of the recently introduced contact Hamiltonian systems for the description of dissipative-like dynamical systems in the context of (non-necessarily exact) contact manifolds. In particular, we show how this class of dynamical systems naturally emerges in the context of Lagrangian Mechanics and in the case of nonlinear evolutions on the space of pure states of a finite-level quantum system. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:159 / 179
页数:21
相关论文
共 28 条
  • [1] Dynamical algebra of observables in dissipative quantum systems
    Alipour, Sahar
    Chruscinski, Dariusz
    Facchi, Paolo
    Marmo, Giuseppe
    Pascazio, Saverio
    Rezakhani, Ali T.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (06)
  • [2] Ashtekar A., 1999, On Einstein's Path: Essays in Honor of Engelbert Schucking, P23
  • [3] Covariant Jacobi brackets for test particles
    Asorey, M.
    Ciaglia, F. M.
    Di Cosmo, F.
    Ibort, A.
    Marmo, G.
    [J]. MODERN PHYSICS LETTERS A, 2017, 32 (23)
  • [4] SUPERSYMMETRIC POINT PARTICLES AND MONOPOLES WITH NO STRINGS
    BALACHANDRAN, AP
    MARMO, G
    SKAGERSTAM, BS
    STERN, A
    [J]. NUCLEAR PHYSICS B, 1980, 164 (03) : 427 - 444
  • [5] Contact Hamiltonian mechanics
    Bravetti, Alessandro
    Cruz, Hans
    Tapias, Diego
    [J]. ANNALS OF PHYSICS, 2017, 376 : 17 - 39
  • [6] VECTOR-FIELDS GENERATING INVARIANTS FOR CLASSICAL DISSIPATIVE SYSTEMS
    CANTRIJN, F
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (09) : 1589 - 1595
  • [7] Tensorial dynamics on the space of quantum states
    Carinena, J. F.
    Clemente-Gallardo, J.
    Jover-Galtier, J. A.
    Marmo, G.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (36)
  • [8] Carinena J. F., 2015, Geometry from Dynamics: Classical and Quantum
  • [9] Chruscinski D., 2012, OPEN SYST INF DYN, V19
  • [10] Chruscinski D., 2018, ANN PHYS UNPUB