Bi-Doped Single-Crystalline (001) Epitaxial TiO2 Anatase Nanostructures for Resistive Random Access Memory Applications

被引:7
作者
Bogle, Kashinath A. [1 ,2 ]
Cheng, Xuan [1 ]
Rana, Abhimanyu [3 ]
Valanoor, Nagarajan [1 ]
机构
[1] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[2] Swami Ramanand Teerth Marathwada Univ, Sch Phys Sci, Thin Film & Devices Lab, Nanded 431606, Maharashtra, India
[3] BML Munjal Univ, Sch Engn & Technol, Gurgaon 122413, Haryana, India
基金
澳大利亚研究理事会;
关键词
epitaxial; TiO2; nanostructures; interface traps; resistive switching; ReRAM application; OXIDE NANOCRYSTALS;
D O I
10.1021/acsanm.9b02416
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Resistive switching memory devices are an emerging class of nonvolatile memories and have shown that outstanding device performance originates from the migration of oxygen vacancies. Research efforts are made to enhance the resistive switching behavior of metal oxide nanostructures. This work reports resistive switching properties of bismuth doped single crystalline epitaxial anatase TiO2 nanostructures fabricated on (001) oriented Nb:SrTiO3 substrates. These nanostructures are fabricated with a Bi4Ti3O12 precursor using a "phase separation and evaporation" approach. Resistive switching measurements, performed by conducting atomic force microscopy on the as-fabricated TiO2 nanostructures, reveal a stable ON/OFF ratio (similar to 5 x 10(4)) (irrespective of the spatial position of the tip) at a read voltage of -0.4 V. Energy dispersive X-ray spectroscopy mapping by scanning transmission electron microscopy confirms presence of trapped bismuth (Bi) near the interface for these as-grown nanostructures. Annealing the nanostructures under high vacuum (10(-7) Torr) and temperature (900 degrees C), i.e., conditions that promote Bi loss and evaporation, results in a marked drop in the ON/OFF ratio to similar to 2 x 10(2). As none of the other morphological or structural parameters change after annealing, it reveals the key role played by the trapped Bi. We propose that these residual Bi ions in the vicinity of the interface act as charge trapping/detrapping sites for carriers under the applied electric field, which enhances the resistance switching behavior. This work demonstrates that purposely introducing defects or dopants during oxide heteroepitaxy can be a very potent method to realize emergent electronic properties in metal oxide nanostructures for the next generation resistive switching application.
引用
收藏
页码:1706 / 1712
页数:13
相关论文
共 27 条
[11]   Charge Transition of Oxygen Vacancies during Resistive Switching in Oxide-Based RRAM [J].
Lee, Jihang ;
Schell, William ;
Zhu, Xiaojian ;
Kioupakis, Emmanouil ;
Lu, Wei D. .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (12) :11579-11586
[12]   Single CuOx Nanowire Memristor: Forming-Free Resistive Switching Behavior [J].
Liang, Kai-De ;
Huang, Chi-Hsin ;
Lai, Chih-Chung ;
Huang, Jian-Shiou ;
Tsai, Hung-Wei ;
Wang, Yi-Chung ;
Shih, Yu-Chuan ;
Chang, Mu-Tung ;
Lo, Shen-Chuan ;
Chueh, Yu-Lun .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (19) :16537-16544
[13]   Nonpolar Resistive Switching in Ag@TiO2 Core-Shell Nanowires [J].
Manning, Hugh G. ;
Biswas, Subhajit ;
Holmes, Justin D. ;
Boland, John J. .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (44) :38959-38966
[14]   Nonvolatile Bipolar Resistive Memory Switching in Single Crystalline NiO Heterostructured Nanowires [J].
Oka, Keisuke ;
Yanagida, Takeshi ;
Nagashima, Kazuki ;
Tanaka, Hidekazu ;
Kawai, Tomoji .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (10) :3434-+
[15]   Ultra-large-scale syntheses of monodisperse nanocrystals [J].
Park, J ;
An, KJ ;
Hwang, YS ;
Park, JG ;
Noh, HJ ;
Kim, JY ;
Park, JH ;
Hwang, NM ;
Hyeon, T .
NATURE MATERIALS, 2004, 3 (12) :891-895
[16]   Electrode dependence of resistive switching in Mn-doped ZnO: Filamentary versus interfacial mechanisms [J].
Peng, H. Y. ;
Li, G. P. ;
Ye, J. Y. ;
Wei, Z. P. ;
Zhang, Z. ;
Wang, D. D. ;
Xing, G. Z. ;
Wu, T. .
APPLIED PHYSICS LETTERS, 2010, 96 (19)
[17]   Colloidal nanocrystal shape and size control: The case of cobalt [J].
Puntes, VF ;
Krishnan, KM ;
Alivisatos, AP .
SCIENCE, 2001, 291 (5511) :2115-2117
[18]   Resistive Switching in Single Epitaxial ZnO Nanoislands [J].
Qi, Jing ;
Olmedo, Mario ;
Ren, Jingjian ;
Zhan, Ning ;
Zhao, Jianze ;
Zheng, Jian-Guo ;
Liu, Jianlin .
ACS NANO, 2012, 6 (02) :1051-1058
[19]   Scaling Behavior of Resistive Switching in Epitaxial Bismuth Ferrite Heterostructures [J].
Rana, Abhimanyu ;
Lu, Haidong ;
Bogle, Kashinath ;
Zhang, Qi ;
Vasudevan, Rama ;
Thakare, Vishal ;
Gruverman, Alexei ;
Ogale, Satishchandra ;
Valanoor, Nagarajan .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (25) :3962-3969
[20]   Resistive switching in transition metal oxides [J].
Sawa, Akihito .
MATERIALS TODAY, 2008, 11 (06) :28-36