Analysis of wavefront propagation using the Talbot effect

被引:44
作者
Zhou, Ping [1 ]
Burge, James H. [1 ]
机构
[1] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
关键词
D O I
10.1364/AO.49.005351
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Talbot imaging is a well-known effect that causes sinusoidal patterns to be reimaged by diffraction with characteristic period that varies inversely with both wavelength and the square of the spatial frequency. This effect is treated using the Fresnel diffraction integral for fields with sinusoidal ripples in amplitude or phase. The periodic nature is demonstrated and explained, and a sinusoidal approximation is made for the case where the phase or amplitude ripples are small, which allows direct determination of the field for arbitrary propagation distance. Coupled with a straightforward method for calculating the effect in a diverging or converging beam, the Talbot method provides a useful approximation for a class of diffraction problems. (C) 2010 Optical Society of America
引用
收藏
页码:5351 / 5359
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 2008, Introduction to Fourier optics
[2]  
Born M., 1999, Principles of optics, Vseventh
[3]  
Burge J. H., 2010, P SPIE, V7739
[4]  
CARMESIN HO, 1998, OPTIK JENA, V108, P3
[5]  
JOZWICKI R, 1983, OPT ACTA, V30, P73, DOI 10.1080/713821043
[6]   GEOMETRICAL THEORY OF DIFFRACTION [J].
KELLER, JB .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1962, 52 (02) :116-+
[7]  
LU Q, 2005, P SOC PHOTO-OPT INS, V5638, P108
[8]  
MILSTER T, 2005, 505 CLASSNOTES
[9]   QUASI RAY-OPTICAL APPROACH TO LONGITUDINAL PERIODICITIES OF FREE AND BOUNDED WAVEFIELDS [J].
OJEDACASTANEDA, J ;
SICRE, EE .
OPTICA ACTA, 1985, 32 (01) :17-26
[10]  
Talbot H F., 1836, LONDON, V9, P401, DOI [10.1080/14786443608649032, DOI 10.1080/14786443608649032]