STACKS OF TRIGONAL CURVES

被引:17
作者
Bolognesi, Michele [1 ]
Vistoli, Angelo [2 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
[2] Univ Pisa, Scuola Normale Super, I-56126 Pisa, Italy
关键词
CHOW RING; SPACES; COVERS;
D O I
10.1090/S0002-9947-2012-05370-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the stack T-g of smooth triple covers of a conic; when g >= 5 this stack is embedded M-g as the locus of trigonal curves. We show that T is a quotient [U-g/Gamma(g)], where Gamma(g) is a certain algebraic group and U-g is an open subscheme of a Gamma(g)-equivariant vector bundle over an open subscheme of a representation of Gamma(g). Using this, we compute the integral Picard group of T-g when g > 1. The main tools are a result of Miranda that describes a flat finite triple cover of a scheme S as given by a locally free sheaf E of rank two on S, with a section of Sym(3) E circle times det E-V, and a new description of the stack of globally generated locally free sheaves of fixed rank and degree on a projective line as a quotient stack.
引用
收藏
页码:3365 / 3393
页数:29
相关论文
共 16 条
[1]   Stacks of cyclic covers of projective spaces [J].
Arsie, A ;
Vistoli, A .
COMPOSITIO MATHEMATICA, 2004, 140 (03) :647-666
[2]  
Casnati G., 1996, J. Algebraic Geom, V5, P439
[3]  
Casnati Gianfranco., 1996, J ALGEBRAIC GEOM, V5, P461
[4]  
Edidin D, 1998, INVENT MATH, V131, P595, DOI 10.1007/s002220050214
[5]  
Edidin D, 2009, MATH RES LETT, V16, P27
[6]  
Fantechi Barbara, Mathematical Surveys and Monographs, V123
[7]  
Hahn DW, 1999, J ALGEBRAIC GEOM, V8, P1
[8]  
Maroni A., 1946, ANN MAT PUR APPL, V25, P343
[9]   TRIPLE COVERS IN ALGEBRAIC-GEOMETRY [J].
MIRANDA, R .
AMERICAN JOURNAL OF MATHEMATICS, 1985, 107 (05) :1123-1158
[10]  
Rojas LAM, 2006, REND SEMIN MAT U PAD, V116, P271