Developing a Gap-Filling Algorithm Using DNN for the Ts-VI Triangle Model to Obtain Temporally Continuous Daily Actual Evapotranspiration in an Arid Area of China

被引:19
作者
Cui, Yaokui [1 ]
Ma, Shihao [2 ]
Yao, Zhaoyuan [1 ]
Chen, Xi [1 ]
Luo, Zengliang [1 ]
Fan, Wenjie [1 ]
Hong, Yang [1 ,3 ]
机构
[1] Peking Univ, Inst RS & GIS, Sch Earth & Space Sci, Beijing 100871, Peoples R China
[2] Johns Hopkins Univ, Carey Business Sch, Washington, DC 20036 USA
[3] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA
基金
美国国家科学基金会;
关键词
evapotranspiration; remote sensing; LST; Ts-VI triangle model; DNN; arid area; RIVER-BASIN; EVAPO-TRANSPIRATION; SURFACE; MODIS; SOIL; REGION; EVAPORATION; TEMPERATURE; VEGETATION; MICROWAVE;
D O I
10.3390/rs12071121
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Temporally continuous daily actual evapotranspiration (ET) data play a critical role in water resource management in arid areas. As a typical remotely sensed land surface temperature (LST)-based ET model, the surface temperature-vegetation index (Ts-VI) triangle model provides direct monitoring of ET, but these estimates are temporally discontinuous due to cloud contamination. In this work, we present a gap-filling algorithm (TSVI_DNN) using a deep neural network (DNN) with the Ts-VI triangle model to obtain temporally continuous daily actual ET at regional scale. The TSVI_DNN model is evaluated against in situ measurements in an arid area of China during 2009-2011 and shows good agreement with eddy covariance (EC) observations. The temporal coverage was improved from 16.1% with the original Ts-VI tringle model to 67.1% with the TSVI_DNN model. The correlation coefficient (R), root mean square error (RMSE), bias, and mean absolute difference (MAD) are 0.9, 0.86 mm d(-1), -0.16 mm d(-1), and 0.65 mm d(-1), respectively. When compared with the National Aeronautics and Space Administration (NASA) official MOD16 version 6 ET product, estimates of ET using TSVI_DNN are improved by approximately 49.2%. The method presented here can potentially contribute to enhanced water resource management in arid areas, especially under climate change.
引用
收藏
页数:17
相关论文
共 61 条
[1]  
Abtew W, 1996, WATER RESOUR BULL, V32, P465
[2]   A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation [J].
Anderson, Martha C. ;
Norman, John M. ;
Mecikalski, John R. ;
Otkin, Jason A. ;
Kustas, William P. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D10)
[3]   A remote sensing surface energy balance algorithm for land (SEBAL) - 1. Formulation [J].
Bastiaanssen, WGM ;
Menenti, M ;
Feddes, RA ;
Holtslag, AAM .
JOURNAL OF HYDROLOGY, 1998, 212 (1-4) :198-212
[4]   Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values [J].
Chavez, Jose L. ;
Neale, Christopher M. U. ;
Prueger, John H. ;
Kustas, William P. .
IRRIGATION SCIENCE, 2008, 27 (01) :67-81
[5]   Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China [J].
Chen, Yang ;
Xia, Jiangzhou ;
Liang, Shunlin ;
Feng, Jinming ;
Fisher, Joshua B. ;
Li, Xin ;
Li, Xianglan ;
Liu, Shuguang ;
Ma, Zhuguo ;
Miyata, Akira ;
Mu, Qiaozhen ;
Sun, Liang ;
Tang, Jianwei ;
Wang, Kaicun ;
Wen, Jun ;
Xue, Yueju ;
Yu, Guirui ;
Zha, Tonggang ;
Zhang, Li ;
Zhang, Qiang ;
Zhao, Tianbao ;
Zhao, Liang ;
Yuan, Wenping .
REMOTE SENSING OF ENVIRONMENT, 2014, 140 :279-293
[6]   Improving land surface temperature modeling for dry land of China [J].
Chen, Yingying ;
Yang, Kun ;
He, Jie ;
Qin, Jun ;
Shi, Jiancheng ;
Du, Jinyang ;
He, Qing .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
[7]  
Colaizzi PD, 2006, T ASABE, V49, P1409, DOI 10.13031/2013.22056
[8]   A Soil Moisture Spatial and Temporal Resolution Improving Algorithm Based on Multi-Source Remote Sensing Data and GRNN Model [J].
Cui, Yaokui ;
Chen, Xi ;
Xiong, Wentao ;
He, Lian ;
Lv, Feng ;
Fan, Wenjie ;
Luo, Zengliang ;
Hong, Yang .
REMOTE SENSING, 2020, 12 (03)
[9]   A spatio-temporal continuous soil moisture dataset over the Tibet Plateau from 2002 to 2015 [J].
Cui, Yaokui ;
Zeng, Chao ;
Zhou, Jie ;
Xie, Hongjie ;
Wan, Wei ;
Hu, Ling ;
Xiong, Wentao ;
Chen, Xi ;
Fan, Wenjie ;
Hong, Yang .
SCIENTIFIC DATA, 2019, 6 (1)
[10]   Global water cycle and remote sensing big data: overview, challenge, and opportunities [J].
Cui, Yaokui ;
Chen, Xi ;
Gao, Jinyu ;
Yan, Binyan ;
Tang, Guoqiang ;
Hong, Yang .
BIG EARTH DATA, 2018, 2 (03) :282-297