The Color Monogenic Signal: Application to Color Edge Detection and Color Optical Flow

被引:21
作者
Demarcq, Guillaume [1 ]
Mascarilla, Laurent [1 ]
Berthier, Michel [1 ]
Courtellemont, Pierre [1 ]
机构
[1] Univ La Rochelle, Math Lab, Applicat MIA, F-17042 La Rochelle, France
关键词
Color monogenic signal; Analytic and monogenic signal; Clifford algebras; Color segmentation; Color optical flow;
D O I
10.1007/s10851-011-0262-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of this paper is to define an extension of the analytic signal for a color image. We generalize the construction of the so-called monogenic signal to mappings with values in the vectorial part of the Clifford algebra R-5,R-0. Solving a Dirac equation in this context leads to a multiscale signal (relatively to the Poisson scale-space) which contains both structure and color information. The color monogenic signal can be used in a wide range of applications. Two examples are detailed: the first one concerns a multiscale geometric segmentation with respect to a given color; the second one is devoted to the extraction of the optical flow from moving objects of a given color.
引用
收藏
页码:269 / 284
页数:16
相关论文
共 25 条
[1]  
[Anonymous], 2012, Clifford algebra to geometric calculus: a unified language for mathematics and physics
[2]  
BRACEWELL RN, 1995, PRENTICE HALL SIGNAL
[3]   Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods [J].
Bruhn A. ;
Weickert J. ;
Schnörr C. .
International Journal of Computer Vision, 2005, 61 (3) :1-21
[5]   EDGE-DETECTION IN MULTISPECTRAL IMAGES [J].
CUMANI, A .
CVGIP-GRAPHICAL MODELS AND IMAGE PROCESSING, 1991, 53 (01) :40-51
[6]  
Demarcq G., 2009, IEEE P INT C IM PROC
[7]  
Demarcq G, 2009, LECT NOTES COMPUT SC, V5702, P906, DOI 10.1007/978-3-642-03767-2_110
[8]   A NOTE ON THE GRADIENT OF A MULTIIMAGE [J].
DIZENZO, S .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1986, 33 (01) :116-125
[9]   Clifford Fourier transform on vector fields [J].
Ebling, J ;
Scheuermann, G .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2005, 11 (04) :469-479
[10]   The monogenic scale-space: A unifying approach to phase-based image processing in scale-space [J].
Felsberg, M ;
Sommer, G .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2004, 21 (01) :5-26