On Exploiting Patterns For Robust FPGA-based Multi-accelerator Edge Computing Systems

被引:0
作者
Razavi, Seyyed Ahmad [1 ]
Ting, Hsin-Yu [1 ]
Giyahchi, Thotiya [1 ]
Bozorgzadeh, Eli [1 ]
机构
[1] Univ Calif Irvine, Irvine, CA 92697 USA
来源
PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022) | 2022年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Edge computing plays a key role in providing services for emerging compute-intensive applications while bringing computation close to end devices. FPGAs have been deployed to provide custom acceleration services due to their reconfigurability and support for multi-tenancy in sharing the computing resource. This paper explores an FPGA-based Multi-Accelerator Edge Computing System, that serves various DNN applications from multiple end devices simultaneously. To dynamically maximize the responsiveness to end devices, we propose a system framework that exploits the characteristic of applications in patterns and employs a staggering module coupled with a mixed offline/online multi-queue scheduling method to alleviate resource contention, and uncertain delay caused by network delay variation. Our evaluation shows the framework can significantly improve responsiveness and robustness in serving multiple end devices.
引用
收藏
页码:116 / 119
页数:4
相关论文
共 50 条
[31]   POCA: a PYNQ Offloaded Cryptographic Accelerator on Embedded FPGA-based Systems [J].
Bertolini, Roberto A. ;
Carloni, Filippo ;
Conficconi, Davide ;
Santambrogio, Marco Domenico .
2024 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, IPDPSW 2024, 2024, :194-194
[32]   Scalable FPGA-Based Convolutional Neural Network Accelerator for Embedded Systems [J].
Zhao, Jingyuan ;
Yin, Zhendong ;
Zhao, Yanlong ;
Wu, Mingyang ;
Xu, Mingdong .
2019 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA 2019), 2019, :36-40
[33]   FPGA-Based Hardware Accelerator on Portable Equipment for EEG Signal Patterns Recognition [J].
Xie, Yu ;
Majoros, Tamas ;
Oniga, Stefan .
ELECTRONICS, 2022, 11 (15)
[34]   Automated Toolchain for Enhanced Productivity in Reconfigurable Multi-accelerator Systems [J].
Ortiz, Alberto ;
Zamacola, Rafael ;
Rodriguez, Alfonso ;
Otero, Andres ;
de la Torre, Eduardo .
APPLIED RECONFIGURABLE COMPUTING. ARCHITECTURES, TOOLS, AND APPLICATIONS, ARC 2020, 2020, 12083 :45-60
[35]   Variable precision multipliers for FPGA-based reconfigurable computing systems [J].
Corsonello, P ;
Perri, S ;
Iachino, MA ;
Cocorullo, G .
FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS, PROCEEDINGS, 2003, 2778 :661-669
[36]   Relation-Oriented Resource Allocation for Multi-Accelerator Systems [J].
Yu, Teng ;
Feng, Bo ;
Stillwell, Mark ;
Coutinho, Jose Gabriel F. ;
Zhao, Wenlai ;
Liang, Shuang ;
Luk, Wayne ;
Wolf, Alexander L. ;
Ma, Yuchun .
2016 IEEE 27TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS (ASAP), 2016, :243-244
[37]   An FPGA-based accelerator for Fourier Descriptors computing for color object recognition using SVM [J].
Fethi Smach ;
Johel Miteran ;
Mohamed Atri ;
Julien Dubois ;
Mohamed Abid ;
Jean-Paul Gauthier .
Journal of Real-Time Image Processing, 2007, 2 :249-258
[38]   An FPGA-based accelerator for Fourier Descriptors computing for color object recognition using SVM [J].
Smach, Fethi ;
Miteran, Johel ;
Atri, Mohamed ;
Dubois, Julien ;
Abid, Mohamed ;
Gauthier, Jean-Paul .
JOURNAL OF REAL-TIME IMAGE PROCESSING, 2007, 2 (04) :249-258
[39]   FPGA-Based Vehicle Detection and Tracking Accelerator [J].
Zhai, Jiaqi ;
Li, Bin ;
Lv, Shunsen ;
Zhou, Qinglei .
SENSORS, 2023, 23 (04)
[40]   An FPGA-based Hardware Accelerator for Iris Segmentation [J].
Avey, Joe ;
Jones, Phillip ;
Zambreno, Joseph .
2018 INTERNATIONAL CONFERENCE ON RECONFIGURABLE COMPUTING AND FPGAS (RECONFIG), 2018,