Evaluating GPP and Respiration Estimates Over Northern Midlatitude Ecosystems Using Solar-Induced Fluorescence and Atmospheric CO2 Measurements

被引:22
作者
Byrne, B. [1 ]
Wunch, D. [1 ]
Jones, D. B. A. [1 ,2 ]
Strong, K. [1 ]
Deng, F. [1 ]
Baker, I. [3 ]
Kohler, P. [4 ]
Frankenberg, C. [4 ,5 ]
Joiner, J. [6 ]
Arora, V. K. [7 ]
Badawy, B. [8 ,9 ]
Harper, A. B. [10 ]
Warneke, T. [11 ]
Petri, C. [11 ]
Kivi, R. [12 ]
Roehl, C. M. [4 ]
机构
[1] Univ Toronto, Dept Phys, Toronto, ON, Canada
[2] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA
[3] Colorado State Univ, Atmospher Sci Dept, Ft Collins, CO 80523 USA
[4] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[5] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[6] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[7] Environm & Climate Change Canada, Climate Res Div, Victoria, BC, Canada
[8] Environm & Climate Change Canada, Climate Res Div, Downsview, ON, Canada
[9] Environm & Climate Change Canada, Meteorol Res Div, Dorval, PQ, Canada
[10] Univ Exeter, Coll Engn Math & Phys Sci, Exeter, Devon, England
[11] Univ Bremen, Inst Environm Phys, Bremen, Germany
[12] Finnish Meteorol Inst, Sodankyla, Finland
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
carbon cycle; terrestrial biosphere model; solar-induced fluorescence; Total Carbon Column Observing Network; GOSAT; FLUXCOM; GROSS PRIMARY PRODUCTION; TERRESTRIAL CHLOROPHYLL FLUORESCENCE; SURFACE PARAMETERIZATION SIB2; GENERAL-CIRCULATION MODEL; NET PRIMARY PRODUCTIVITY; CARBON USE EFFICIENCY; SEASONAL CYCLE; RETRIEVAL ALGORITHM; TRANSPORT MODEL; SATELLITE;
D O I
10.1029/2018JG004472
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
On regional to global scales, few constraints exist on gross primary productivity (GPP) and ecosystem respiration (R-e) fluxes. Yet constraints on these fluxes are critical for evaluating and improving terrestrial biosphere models. In this study, we evaluate the seasonal cycle of GPP, R-e, and net ecosystem exchange (NEE) produced by four terrestrial biosphere models and FLUXCOM, a data-driven model, over northern midlatitude ecosystems. We evaluate the seasonal cycle of GPP and NEE using solar-induced fluorescence retrieved from the Global Ozone Monitoring Experiment-2 and column-averaged dry-air mole fractions of CO2 (X-CO2) from the Total Carbon Column Observing Network, respectively. We then infer R-e by combining constraints on GPP with constraints on NEE from two flux inversions. An ensemble of optimized R-e seasonal cycles is generated using five GPP estimates and two NEE estimates. The optimized R-e curves generally show high consistency with each other, with the largest differences due to the magnitude of GPP. We find optimized R-e exhibits a systematically broader summer maximum than modeled R-e, with values lower during June-July and higher during the fall than R-e. Further analysis suggests that the differences could be due to seasonal variations in the carbon use efficiency (possibly due to an ecosystem-scale Kok effect) and to seasonal variations in the leaf litter and fine root carbon pool. The results suggest that the inclusion of variable carbon use efficiency for autotrophic respiration and carbon pool dependence for heterotrophic respiration is important for accurately simulating R-e.
引用
收藏
页码:2976 / 2997
页数:22
相关论文
共 109 条
[1]  
Adler RF, 2003, J HYDROMETEOROL, V4, P1147, DOI 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO
[2]  
2
[3]   Spatiotemporal patterns of terrestrial gross primary production: A review [J].
Anav, Alessandro ;
Friedlingstein, Pierre ;
Beer, Christian ;
Ciais, Philippe ;
Harper, Anna ;
Jones, Chris ;
Murray-Tortarolo, Guillermo ;
Papale, Dario ;
Parazoo, Nicholas C. ;
Peylin, Philippe ;
Piao, Shilong ;
Sitch, Stephen ;
Viovy, Nicolas ;
Wiltshire, Andy ;
Zhao, Maosheng .
REVIEWS OF GEOPHYSICS, 2015, 53 (03) :785-818
[4]  
Andres R., 2016, MONTHLY FOSSIL FUEL, DOI [10. 3334/CDIAC/ffe. MonthlyMass. 2016, DOI 10.3334/CDIAC/FFE.M0NTHLYMASS.2016]
[5]  
Anselmo D., 2010, P 12 AMS C ATM CHEM
[6]  
Arneth A, 1998, TREE PHYSIOL, V18, P785
[7]   A parameterization of leaf phenology for the terrestrial ecosystem component of climate models [J].
Arora, VK ;
Boer, GJ .
GLOBAL CHANGE BIOLOGY, 2005, 11 (01) :39-59
[8]   Coupling the Canadian Terrestrial Ecosystem Model (CTEM v. 2.0) to Environment and Climate Change Canada's greenhouse gas forecast model (v.107-glb) [J].
Badawy, Bakr ;
Polavarapu, Saroja ;
Jones, Dylan B. A. ;
Deng, Feng ;
Neish, Michael ;
Melton, Joe R. ;
Nassar, Ray ;
Arora, Vivek K. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (02) :631-663
[9]   TransCom 3 inversion intercomparison:: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988-2003 -: art. no. GB1002 [J].
Baker, DF ;
Law, RM ;
Gurney, KR ;
Rayner, P ;
Peylin, P ;
Denning, AS ;
Bousquet, P ;
Bruhwiler, L ;
Chen, YH ;
Ciais, P ;
Fung, IY ;
Heimann, M ;
John, J ;
Maki, T ;
Maksyutov, S ;
Masarie, K ;
Prather, M ;
Pak, B ;
Taguchi, S ;
Zhu, Z .
GLOBAL BIOGEOCHEMICAL CYCLES, 2006, 20 (01)
[10]   Simulated and observed fluxes of sensible and latent heat and CO2 at the WLEF-TV tower using SiB2.5 [J].
Baker, I ;
Denning, AS ;
Hanan, N ;
Prihodko, L ;
Uliasz, M ;
Vidale, PL ;
Davis, K ;
Bakwin, P .
GLOBAL CHANGE BIOLOGY, 2003, 9 (09) :1262-1277