On phase transitions and limit theorems for homopolymers

被引:0
|
作者
Cranston, M. [1 ]
Molchanov, S. [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
来源
Probability and Mathematical Physics: A Volume in Honor of Stanislav Molchanov | 2007年 / 42卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given the measure on random walk paths P-0 and a Hamiltonian H the Gibbs perturbation of H defined by dP(beta,t)/dP(0) = Z(beta,t)(-1) exp{beta H(t,x)} with Z(beta,t) = integral exp{beta H(t,x)}dP(0)(x) gives a new measure on paths x which can be viewed as polymers. In the the case H(t, x) = integral(t)(0) delta(0)(x(s)) ds we say the resulting measure is concentrated on "homopolymers" and are interested in the influence of dimension and beta on their behavior.
引用
收藏
页码:97 / 112
页数:16
相关论文
共 50 条
  • [1] Phase transitions in brushes of homopolymers
    Ballauff, Matthias
    Borisov, Oleg V.
    POLYMER, 2016, 98 : 402 - 408
  • [2] Phase transitions of confined lattice homopolymers
    Hehmeyer, OJ
    Arya, G
    Panagiotopoulos, AZ
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (21): : 6809 - 6815
  • [3] Limit theorems and phase transitions for two models of summation of iid random variables depending on parameters
    M. Grabchak
    S. A. Molchanov
    Doklady Mathematics, 2013, 88 : 431 - 434
  • [4] Limit theorems and phase transitions for two models of summation of iid random variables depending on parameters
    Grabchak, M.
    Molchanov, S. A.
    DOKLADY MATHEMATICS, 2013, 88 (01) : 431 - 434
  • [5] TRANSITIONS OF DNA HOMOPOLYMERS
    INMAN, RB
    JOURNAL OF MOLECULAR BIOLOGY, 1964, 9 (03) : 624 - &
  • [6] LIMIT THEOREMS AND PHASE TRANSITIONS FOR TWO MODELS OF SUMMATION OF INDEPENDENT IDENTICALLY DISTRIBUTED RANDOM VARIABLES WITH A PARAMETER
    Grabchak, M.
    Molchanov, S. A.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2015, 59 (02) : 222 - 243
  • [7] Solid Phase Transitions in the Liquid Limit
    Grabovsky, Yury
    Truskinovsky, Lev
    JOURNAL OF ELASTICITY, 2024, 155 (1-5) : 717 - 745
  • [8] LIMIT-THEOREMS FOR RANDOM-WALKS WITH DYNAMICAL RANDOM TRANSITIONS
    LIN, M
    RUBSHTEIN, BZ
    WITTMANN, R
    PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) : 285 - 300
  • [9] On the singular limit in a phase field model of phase transitions
    Alikakos, Nicholas D.
    Bates, Peter W.
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1988, 5 (02): : 141 - 178
  • [10] Molecular dynamics studies of the phase transitions of homopolymers of p-hydroxybenzoic acid
    Nolan, M
    Greer, JC
    JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (34): : 7111 - 7121