TIME MINIMAL SATURATION OF A PAIR OF SPINS AND APPLICATION IN MAGNETIC RESONANCE IMAGING

被引:0
|
作者
Bonnard, Bernard [1 ,2 ]
Cots, Olivier [3 ]
Rouot, Jeremy [1 ,4 ]
Verron, Thibaut [5 ]
机构
[1] Univ Bourgogne, Inst Math Bourgogne, 9 Ave Alain Savary, F-21078 Dijon, France
[2] INRIA, 2004 Route Lucioles, F-06902 Sophia Antipolis, France
[3] Toulouse Univ, INP ENSEEIHT IRIT, UMR CNRS 5505, 2 Rue Camichel, F-31071 Toulouse, France
[4] EPF Ecole Ingenieur ES, 2 Rue F Sastre, F-10430 Rosieres Pres Troyes, France
[5] Johannes Kepler Univ Linz, Inst Algebra, A-4040 Linz, Austria
关键词
Geometric optimal control; contrast imaging in NMR; direct method; shooting and continuation techniques; moment optimization; Grobner basis; SINGULAR TRAJECTORIES; OCCUPATION MEASURES; SYSTEMS; OPTIMIZATION; OPTIMALITY;
D O I
10.3934/mcrf.2019029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we analyze the time minimal control for the saturation of a pair of spins of the same species but with inhomogeneities of the applied RF-magnetic field, in relation with the contrast problem in Magnetic Resonance Imaging. We make a complete analysis based on geometric control to classify the optimal syntheses in the single spin case to pave the road to analyze the case of two spins. The Bocop software is used to determine local minimizers for physical test cases and Linear Matrix Inequalities approach is applied to estimate the global optimal value and validate the previous computations. This is complemented by numerical computations combining shooting and continuation methods implemented in the HamPath software to analyze the structure of the time minimal solution with respect to the set of parameters of the species. Symbolic computations techniques are used to handle the singularity analysis.
引用
收藏
页码:47 / 88
页数:42
相关论文
共 50 条
  • [1] Geometric and Numerical Methods in the Contrast Imaging Problem in Nuclear Magnetic Resonance
    Bonnard, Bernard
    Claeys, Mathieu
    Cots, Olivier
    Martinon, Pierre
    ACTA APPLICANDAE MATHEMATICAE, 2015, 135 (01) : 5 - 45
  • [2] Geometric and Numerical Methods in the Contrast Imaging Problem in Nuclear Magnetic Resonance
    Bernard Bonnard
    Mathieu Claeys
    Olivier Cots
    Pierre Martinon
    Acta Applicandae Mathematicae, 2015, 135 : 5 - 45
  • [3] INTEGRABILITY METHODS IN THE TIME MINIMAL COHERENCE TRANSFER FOR ISING CHAINS OF THREE SPINS
    Bonnard, Bernard
    Combot, Thierry
    Jassionnesse, Lionel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (09) : 4095 - 4114
  • [4] Estimation of relaxation time distributions in magnetic resonance imaging
    Susko, E
    Bronskill, MJ
    Graham, SJ
    Tibshirani, RJ
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (03): : 379 - 394
  • [5] SINGULAR TRAJECTORIES AND THE CONTRAST IMAGING PROBLEM IN NUCLEAR MAGNETIC RESONANCE
    Bonnard, Bernard
    Chyba, Monique
    Marriott, John
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 1325 - 1349
  • [6] In vivo Off-Resonance Saturation Magnetic Resonance Imaging of αvβ3-Targeted Superparamagnetic Nanoparticles
    Khemtong, Chalermchai
    Kessinger, Chase W.
    Ren, Jimin
    Bey, Erik A.
    Yang, Su-Geun
    Guthi, Jagadeesh Setti
    Boothman, David A.
    Sherry, A. Dean
    Gao, Jinming
    CANCER RESEARCH, 2009, 69 (04) : 1651 - 1658
  • [7] Processing Time Reduction: an Application in Living Human High-Resolution Diffusion Magnetic Resonance Imaging Data
    Lori, Nicolas F.
    Ibanez, Augustin
    Lavrador, Rui
    Fonseca, Lucia
    Santos, Carlos
    Travasso, Rui
    Pereira, Artur
    Rossetti, Rosaldo
    Sousa, Nuno
    Alves, Victor
    JOURNAL OF MEDICAL SYSTEMS, 2016, 40 (11)
  • [8] Processing Time Reduction: an Application in Living Human High-Resolution Diffusion Magnetic Resonance Imaging Data
    Nicolás F . Lori
    Augustin Ibañez
    Rui Lavrador
    Lucia Fonseca
    Carlos Santos
    Rui Travasso
    Artur Pereira
    Rosaldo Rossetti
    Nuno Sousa
    Victor Alves
    Journal of Medical Systems, 2016, 40
  • [9] Design and Optimization of Ring-pair Permanent Magnets for Portable Magnetic Resonance Imaging Systems
    Cheng, Yi-Yuan
    Su, Ming-Yang
    Huang, Yi-Ding
    Liu, Wei
    ENGINEERING LETTERS, 2025, 33 (04) : 823 - 832
  • [10] Optimization of Time Repetition and Time Echo Variation to the Image Quality in Magnetic Resonance Imaging Brain Tumor
    Jannah, Marichatul
    Suryono, Suryono
    Wibowo, Gatot Murti
    ADVANCED SCIENCE LETTERS, 2017, 23 (07) : 6627 - 6629