Frequency stabilization of distributed-feedback laser by time measurement

被引:0
作者
Liu, Hao [1 ]
Shu, Rong [1 ]
Wu, Jun [1 ]
Ge, Ye [1 ]
Zheng, Long [1 ]
Hu, Yihua [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, Key Lab Space Act Optoelect Technol, Shanghai 200083, Peoples R China
来源
INTERNATIONAL SYMPOSIUM ON OPTOELECTRONIC TECHNOLOGY AND APPLICATION 2014: LASER AND OPTICAL MEASUREMENT TECHNOLOGY; AND FIBER OPTIC SENSORS | 2014年 / 9297卷
关键词
Spectroscopy; distributed-feedback lasers; laser stabilization; CAVITY DIODE-LASER; SATURATION SPECTROSCOPY; MU-M; IODINE;
D O I
10.1117/12.2069563
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel method of stabilizing a distributed-feedback laser. It's the first time to our knowledge that the timemeasurement technique is used in laser frequency stabilization. We obtain the laser frequency deviation information from the Fabry-Perot interferometer based on the pulse delay time. In contrast to traditional approaches, the laser can be stabilized in the quasi-continuous spectrum that the interferometer covering. Our method can obtain the error signal from a high signal to noise ratio (SNR) of the voltage signal and not limited by the frequency references. It also avoids many traditional problems, such as power insensitive, modulation, low-level signal, and finite frequency references. A relative frequency fluctuation less than 0.1 MHz is achieved and the root of an Allan variance is about 10-11 for an average time of 10 s.
引用
收藏
页数:5
相关论文
共 50 条
[31]   Photonic-crystal distributed-feedback quantum cascade lasers [J].
Vurgaftman, I ;
Meyer, JR .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :592-602
[32]   Measurement of iodine purity in absorption cells for laser frequency stabilization [J].
Hrabina, Jan ;
Petru, Frantisek ;
Jedlicka, Petr ;
Cip, Ondrej ;
Lazar, Josef .
ADVANCED LASER TECHNOLOGIES 2006, 2007, 6606
[33]   Measurement of iodine purity in absorption cells for laser frequency stabilization [J].
Hrabina, Jan ;
Petru, Frantisek ;
Jedlicka, Petr ;
Cip, Ondrej ;
Lazar, Josef .
2007 17TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA, VOLS 1 AND 2, 2007, :479-+
[34]   Linewidth reduction of a distributed-feedback diode laser using an all-fiber interferometer with short path imbalance [J].
Lee, Won-Kyu ;
Park, Chang Yong ;
Mun, Jongchul ;
Yu, Dai-Hyuk .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (07)
[35]   High-Power, Narrow-Linewidth Distributed-Feedback Quantum-Cascade Laser for Molecular Spectroscopy [J].
Bertrand, Mathieu ;
Shlykov, Aleksandr ;
Shahmohamadi, Mehran ;
Beck, Mattias ;
Willitsch, Stefan ;
Faist, Jerome .
PHOTONICS, 2022, 9 (08)
[36]   Theory and experiment on the amplified spontaneous emission from distributed-feedback lasers [J].
Minch, J ;
Chuang, SL ;
Chang, CS ;
Fang, W ;
Chen, YK ;
TanbunEk, T .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1997, 33 (05) :815-823
[37]   High-Speed Distributed-Feedback Lasers with Nanoscale Surface Gratings [J].
Dumitrescu, M. ;
Laakso, A. ;
Viheriala, J. ;
Bardella, P. ;
Montrosset, I. .
2013 IEEE 4TH INTERNATIONAL CONFERENCE ON PHOTONICS (ICP), 2013, :252-254
[38]   Distributed feedback transistor laser [J].
Dixon, F. ;
Feng, M. ;
Holonyak, N., Jr. .
APPLIED PHYSICS LETTERS, 2010, 96 (24)
[39]   Pre-stabilization of a Distributed Feedback Diode Laser for Locking to a High-Finesse Cavity [J].
Fordell, T. ;
Wallin, A. E. ;
Lindvall, T. ;
Merimaa, M. .
2016 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM 2016), 2016,
[40]   Wavelength shift enhancement in quantum-well intermixed distributed-feedback lasers [J].
Zhan, L ;
Chan, KS ;
Pun, EYB ;
Ho, HP .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2002, 14 (06) :744-746