Regularization methods for blind deconvolution and blind source separation problems

被引:18
作者
Burger, M [1 ]
Scherzer, O [1 ]
机构
[1] Johannes Kepler Univ, Inst Ind Mat, A-4040 Linz, Austria
关键词
alternating minimization algorithm; blind deconvolution; blind source separation; ill-posed problems; neural networks; regularization; signal and image processing;
D O I
10.1007/s498-001-8041-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is devoted to blind deconvolution and blind separation problems, Blind deconvolution is the identification of a point spread function and an input signal from an observation of their convolution. Blind source separation is the recovery of a vector of input signals from a vector of observed signals, which are mixed by a linear (unknown) operator. We show that both problems are paradigms of nonlinear ill-posed problems. Consequently, regularization techniques have to be used for stable numerical reconstructions. In this paper we develop a rigorous convergence analysis for regularization techniques for the solution of blind deconvolution and blind separation problems. Convergence of regularized point spread functions and signals to a solution is established and a convergence rate result in dependence of the noise level is presented. Moreover, we prove convergence of the alternating minimization algorithm for the numerical solution of regularized blind deconvolution problems and present some numerical examples. Moreover, we show that many neural network approaches for blind inversion can be considered in the framework of regularization theory.
引用
收藏
页码:358 / 383
页数:26
相关论文
共 50 条
[21]   Blind infrared spectral deconvolution with discrete Radon transform regularization for biomedical applications [J].
Liu, Hai ;
Liu, Tingting ;
Liu, Li ;
An, Qing ;
Bai, Chengyue ;
Li, Huiyou .
INFRARED PHYSICS & TECHNOLOGY, 2025, 144
[22]   Blind deconvolution using the similarity of multiscales regularization for infrared spectrum [J].
Huang, Tao ;
Liu, Hai ;
Zhang, Zhaoli ;
Liu, Sanyan ;
Liu, Tingting ;
Shen, Xiaoxuan ;
Zhang, Tianxu ;
Zhang, Jianfeng .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2015, 26 (11)
[23]   Blind source separation methods applied to evaluate harmonic contribution [J].
Pereira, Fabiana A. ;
Silva, Sergio F. de P. ;
Santos, Ivan N. .
INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2021, 31 (12)
[24]   Investigation of blind source separation methods for extraction of fetal ECG [J].
Ananthanag, KVK ;
Sahambi, JS .
CCECE 2003: CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3, PROCEEDINGS: TOWARD A CARING AND HUMANE TECHNOLOGY, 2003, :2021-2024
[25]   Iteratively Reweighted Blind Deconvolution With Adaptive Regularization Parameter Estimation [J].
Fang, Houzhang ;
Chang, Yi ;
Zhou, Gang ;
Deng, Lizhen .
IEEE ACCESS, 2017, 5 :11959-11973
[26]   BLIND DECONVOLUTION WITH PSF REGULARIZATION FOR WIDE-FIELD MICROSCOPY [J].
Keuper, Margret ;
Temerinac-Ott, Maja ;
Padeken, Jan ;
Heun, Patrick ;
Brox, Thomas ;
Burkhardt, Hans ;
Ronneberger, Olaf .
2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, :1292-1295
[27]   L1-Norm Regularization for Short-and-Sparse Blind Deconvolution: Point Source Separability and Region Selection [J].
Wang, Weixi ;
Li, Ji ;
Ji, Hui .
SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (03) :1345-1372
[28]   Blind image deconvolution via an adaptive weighted TV regularization [J].
Xu, Chenguang ;
Zhang, Chao ;
Ma, Mingxi ;
Zhang, Jun .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) :6497-6511
[29]   Blind Rhythmic Source Separation [J].
Kim, Minje ;
Yoo, Jiho ;
Kang, Kyeongok ;
Choi, Seungjin .
JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2009, 28 (08) :697-705
[30]   Complex Blind Source Separation [J].
Mina Kemiha ;
Abdellah Kacha .
Circuits, Systems, and Signal Processing, 2017, 36 :4670-4687