Global stability of higher dimensional monotone maps

被引:23
作者
Balreira, E. Cabral [1 ]
Elaydi, Saber [1 ]
Luis, Rafael [2 ]
机构
[1] Trinity Univ, Dept Math, San Antonio, TX 78212 USA
[2] Univ Lisbon, Inst Super Tecn, Ctr Math Anal Geometry & Dynam Syst, Lisbon, Portugal
关键词
Global stability; monotone maps; Ricker competition model; Leslie-Gower competition model; competitive maps; COMPETITIVE-EXCLUSION; DIFFERENTIAL-EQUATIONS; CARRYING SIMPLEX; ATTRACTION; MODELS; COEXISTENCE; DYNAMICS; SYSTEMS; BASIN;
D O I
10.1080/10236198.2017.1388375
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a notion of monotonicity for maps defined on Euclidean spaces R-+(k), of arbitrary dimension k. This is a geometric approach that extends the classical notion of planar monotone maps or planar competitive difference equations. For planar maps, we show that our notion and the classical notion of monotonicity are equivalent. In higher dimensions, we establish certain verifiable conditions under which Kolmogorov monotone maps on R-+(k) have a globally asymptotically stable fixed point. We apply our results to two competition population models, the Leslie-Gower and the Ricker models of two-and three-species. It is shown that these two models have a unique interior fixed point that is globally asymptotically stable.
引用
收藏
页码:2037 / 2071
页数:35
相关论文
共 33 条
[1]   Competitive exclusion and coexistence in an n-species Ricker model [J].
Ackleh, Azmy S. ;
Salceanu, Paul L. .
JOURNAL OF BIOLOGICAL DYNAMICS, 2015, 9 :321-331
[2]  
[Anonymous], 2003, The Struggle for Existence
[3]  
[Anonymous], 1999, STUDIES ADV MATH
[4]   Hierarchical competition models with Allee effects [J].
Assas, Laila ;
Elaydi, Saber ;
Kwessi, Eddy ;
Livadiotis, George ;
Ribble, David .
JOURNAL OF BIOLOGICAL DYNAMICS, 2015, 9 :32-44
[5]   Geometry of carrying simplices of 3-species competitive Lotka-Volterra systems [J].
Baigent, Stephen .
NONLINEARITY, 2013, 26 (04) :1001-1029
[6]   LOCAL STABILITY IMPLIES GLOBAL STABILITY FOR THE PLANAR RICKER COMPETITION MODEL [J].
Balera, E. Cabral ;
Elaydi, Saber ;
Luis, Rafael .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (02) :323-351
[7]   Global dynamics of triangular maps [J].
Balreira, E. Cabral ;
Elaydi, Saber ;
Luis, Rafael .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 104 :75-83
[8]   Foliations and global inversion [J].
Balreira, Eduardo Cabral .
COMMENTARII MATHEMATICI HELVETICI, 2010, 85 (01) :73-93
[9]   Monotone functions and maps [J].
Basu, Saugata ;
Gabrielov, Andrei ;
Vorobjov, Nicolai .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2013, 107 (01) :5-33
[10]   Semi-monotone sets [J].
Basu, Saugata ;
Gabrielov, Andrei ;
Vorobjov, Nicolai .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (02) :635-657