A multi-use deep learning method for CITE-seq and single-cell RNA-seq data integration with cell surface protein prediction and imputation

被引:43
作者
Lakkis, Justin [1 ]
Schroeder, Amelia [1 ]
Su, Kenong [1 ]
Lee, Michelle Y. Y. [2 ]
Bashore, Alexander C. [3 ]
Reilly, Muredach P. [3 ]
Li, Mingyao [1 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Grad Grp Genom & Computat Biol, Philadelphia, PA 19104 USA
[3] Columbia Univ Irving Med Ctr, Dept Med, Div Cardiol, New York, NY USA
关键词
MONOCYTES;
D O I
10.1038/s42256-022-00545-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Single-cell multi-omics technologies have increased dramatically in biomedical research. Lakkis et al. develop a deep learning method to address computational challenges in CITE-seq and single-cell RNA-seq datasets. CITE-seq, a single-cell multi-omics technology that measures RNA and protein expression simultaneously in single cells, has been widely applied in biomedical research, especially in immune-related disorders and other diseases such as influenza and COVID-19. Despite the proliferation of CITE-seq, it is still costly to generate such data. Although data integration can increase information content, this raises computational challenges. First, combining multiple datasets is prone to batch effects that need to be addressed. Second, it is difficult to combine multiple CITE-seq datasets because the protein panels in different datasets may only partially overlap. Integrating multiple CITE-seq and single-cell RNA sequencing (scRNA-seq) datasets is important because this allows the utilization of as many data as possible to uncover cell population heterogeneity. To overcome these challenges, we present sciPENN, a multi-use deep learning approach that supports CITE-seq and scRNA-seq data integration, protein expression prediction for scRNA-seq, protein expression imputation for CITE-seq, quantification of prediction and imputation uncertainty, and cell type label transfer from CITE-seq to scRNA-seq. Comprehensive evaluations spanning multiple datasets demonstrate that sciPENN outperforms other current state-of-the-art methods.
引用
收藏
页码:940 / +
页数:20
相关论文
共 26 条
[1]   Elevated CD14++CD16- Monocytes Predict Cardiovascular Events [J].
Berg, Katarina E. ;
Ljungcrantz, Irena ;
Andersson, Linda ;
Bryngelsson, Carl ;
Hedblad, Bo ;
Fredrikson, Gunilla N. ;
Nilsson, Jan ;
Bjorkbacka, Harry .
CIRCULATION-CARDIOVASCULAR GENETICS, 2012, 5 (01) :122-131
[2]   Unlocking the secrets of cell signaling [J].
Berridge, MJ .
ANNUAL REVIEW OF PHYSIOLOGY, 2005, 67 :1-21
[3]   Shift of monocyte subsets along their continuum predicts cardiovascular outcomes [J].
Cappellari, Roberta ;
D'Anna, Marianna ;
Bonora, Benedetta Maria ;
Rigato, Mauro ;
Cignarella, Andrea ;
Avogaro, Angelo ;
Fadini, Gian Paolo .
ATHEROSCLEROSIS, 2017, 266 :95-102
[4]  
Chan Zuckerberg Initiative, 2020, PREPRINT, DOI [10.1101/2020.11.20.20227355, DOI 10.1101/2020.11.20.20227355]
[5]   Single-Cell (Multi)omics Technologies [J].
Chappell, Lia ;
Russell, Andrew J. C. ;
Voet, Thierry .
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 19, 2018, 19 :15-41
[6]   Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response [J].
Davis, Daniel M. .
NATURE REVIEWS IMMUNOLOGY, 2007, 7 (03) :238-243
[7]   Joint probabilistic modeling of single-cell multi-omic data with totalVI [J].
Gayoso, Adam ;
Steier, Zoe ;
Lopez, Romain ;
Regier, Jeffrey ;
Nazor, Kristopher L. ;
Streets, Aaron ;
Yosef, Nir .
NATURE METHODS, 2021, 18 (03) :272-+
[8]   Monocytes in Coronary Artery Disease and Atherosclerosis Where Are We Now? [J].
Ghattas, Angie ;
Griffiths, Helen R. ;
Devitt, Andrew ;
Lip, Gregory Y. H. ;
Shantsila, Eduard .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2013, 62 (17) :1541-1551
[9]   Integrated analysis of multimodal single-cell data [J].
Hao, Yuhan ;
Hao, Stephanie ;
Andersen-Nissen, Erica ;
Mauck, William M. I. I. I. I. I. I. ;
Zheng, Shiwei ;
Butler, Andrew ;
Lee, Maddie J. ;
Wilk, Aaron J. ;
Darby, Charlotte ;
Zager, Michael ;
Hoffman, Paul ;
Stoeckius, Marlon ;
Papalexi, Efthymia ;
Mimitou, Eleni P. ;
Jain, Jaison ;
Srivastava, Avi ;
Stuart, Tim ;
Fleming, Lamar M. ;
Yeung, Bertrand ;
Rogers, Angela J. ;
McElrath, Juliana M. ;
Blish, Catherine A. ;
Gottardo, Raphael ;
Smibert, Peter ;
Satija, Rahul .
CELL, 2021, 184 (13) :3573-+
[10]   Which white blood cell subtypes predict increased cardiovascular risk? [J].
Horne, BD ;
Anderson, JL ;
John, JM ;
Weaver, A ;
Bair, TL ;
Jensen, KR ;
Renlund, DG ;
Muhlestein, JB .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2005, 45 (10) :1638-1643