Warp-X: A new exascale computing platform for beam-plasma simulations

被引:81
作者
Vay, J. -L. [1 ]
Almgren, A. [1 ]
Bell, J. [1 ]
Ge, L. [3 ]
Grote, D. P. [2 ]
Hogan, M. [3 ]
Kononenko, O. [3 ]
Lehe, R. [1 ]
Myers, A. [1 ]
Ng, C. [3 ]
Park, J. [1 ]
Ryne, R. [1 ]
Shapoval, O. [1 ]
Thevenet, M. [1 ]
Zhang, W. [1 ]
机构
[1] LBNL, Berkeley, CA 94720 USA
[2] LLNL, Livermore, CA 94550 USA
[3] SLAC, Menlo Pk, CA 94025 USA
关键词
Particle-in-cell; Particle accelerators; Plasma based accelerators; Laser wakefield accelerator; Plasma simulations; Relativistic plasmas;
D O I
10.1016/j.nima.2018.01.035
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such as the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. The code structure, status, early examples of applications and plans are discussed. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:476 / 479
页数:4
相关论文
共 9 条
[1]   Pseudospectral Maxwell solvers for an accurate modeling of Doppler harmonic generation on plasma mirrors with particle-in-cell codes [J].
Blaclard, G. ;
Vincenti, H. ;
Lehe, R. ;
Vay, J. L. .
PHYSICAL REVIEW E, 2017, 96 (03)
[2]   Controlling self-force errors at refinement boundaries for AMR-PIC [J].
Colella, Phillip ;
Norgaard, Peter C. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (04) :947-957
[3]   Spatial Properties of High-Order Harmonic Beams from Plasma Mirrors: A Ptychographic Study [J].
Leblanc, A. ;
Monchoce, S. ;
Vincenti, H. ;
Kahaly, S. ;
Vay, J. -L. ;
Quere, F. .
PHYSICAL REVIEW LETTERS, 2017, 119 (15)
[4]   Novel methods in the Particle-In-Cell accelerator Code-Framework Warp [J].
Vay, J.-L. ;
Grote, D.P. ;
Cohen, R.H. ;
Friedman, A. .
Computational Science and Discovery, 2012, 5 (01)
[5]   A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas [J].
Vay, Jean-Luc ;
Haber, Irving ;
Godfrey, Brendan B. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 243 :260-268
[6]   Mesh refinement for particle-in-cell plasma simulations: Applications to and benefits for heavy ion fusion [J].
Vay, JL ;
Colella, P ;
McCorquodale, P ;
Van Straalen, B ;
Friedman, A ;
Grote, DP .
LASER AND PARTICLE BEAMS, 2002, 20 (04) :569-575
[7]   An extended FDTD scheme for the wave equation: Application to multiscale electromagnetic simulation [J].
Vay, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 167 (01) :72-98
[8]   Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver [J].
Vincenti, H. ;
Vay, J. -L. .
COMPUTER PHYSICS COMMUNICATIONS, 2016, 200 :147-167
[9]  
Vincenti H., ARXIV170708500