An A posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems

被引:60
作者
Bustinza, R
Gatica, GN
Cockburn, B
机构
[1] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
[2] Univ Concepcion, Dept Ingn Matemat, GI2MA, Concepcion, Chile
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
local discontinuous Galerkin methods; residual-based error estimates;
D O I
10.1007/s10915-004-4137-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a new residual-based reliable a posteriori error estimator for the local discontinuous Galerkin approximations of linear and nonlinear diffusion problems in polygonal regions of R-2. Our analysis, which applies to convex and nonconvex domains, is based on Helmholtz decompositions of the error and a suitable auxiliary polynomial function interpolating the Dirichlet datum. Several examples confirming the reliability of the estimator and providing numerical evidences for its efficiency are given. Furthermore, the associated adaptive method, which considers meshes with and without hanging nodes, is shown to be much more efficient than a uniform refinement to compute the discrete solutions. In particular, the experiments illustrate the ability of the adaptive algorithm to localize the singularities of each problem.
引用
收藏
页码:147 / 185
页数:39
相关论文
共 20 条
[1]  
Adams R., 1975, PURE APPL MATH, V65
[2]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[3]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[4]   Energy norm a posteriori error estimation for discontinuous Galerkin methods [J].
Becker, R ;
Hansbo, P ;
Larson, MG .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (5-6) :723-733
[5]  
BECKER R, 2001, 200115 CHALM U TECHN
[6]  
BUSTINZA R, 2004, THESIS U CONCEPCION
[7]  
BUSTINZA R, IN PRESS SIAM J SCI
[8]   A posteriori error estimates for nonconforming finite element methods [J].
Carstensen, C ;
Bartels, S ;
Jansche, S .
NUMERISCHE MATHEMATIK, 2002, 92 (02) :233-256
[9]   An a posteriori error estimate for a first-kind integral equation [J].
Carstensen, C .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :139-155
[10]   An a priori error analysis of the local discontinuous Galerkin method for elliptic problems [J].
Castillo, P ;
Cockburn, B ;
Perugia, I ;
Shötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1676-1706