ZnIn2S4/TiO2/Ag Composite Photocatalyst: Preparation and Performance for Hydrogen Production from Water Splitting

被引:2
|
作者
Wang Lan [1 ]
Shi Hang [1 ]
Zhang Huan [1 ]
Chen Qi-Xin [1 ]
Jin Bao-Dan [1 ]
Zhang Hong-Zhong [1 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Mat & Chem Engn, Henan Collaborat Innovat Ctr Environm Pollut Cont, Zhengzhou 450001, Peoples R China
关键词
ZnIn2S4/TiO2/Ag; electron cocatalyst; heterostructure; photocatalytic hydrogen production; HETEROSTRUCTURE; DEGRADATION; GENERATION; PHOTOLYSIS; ZNIN2S4;
D O I
10.11862/CJIC.2021.187
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Firstly, 1D TiO2 nanobelts were uniformly interspersed into 3D ZnIn2S4 microspheres assembled by lamellar structure by solvothermal method. The heterostructure photocatalyst can effectively suppress the re-combination of photoinduced electron-hole pairs. Secondly, 0D Ag nanoparticles were loaded onto 3D ZnIn2S4/ID TiO2 heterostructure by photodeposition method. Owing to the plasma effect of 0D Ag nanoparticles and the action of electron co-catalyst, ternary 3D ZnIn2S4/ID TiO2/0D Ag composite photocatalyst showed excellent performance in photocatalytic hydrogen evolution. Under simulated sunlight irradiation, the hydrogen production rate of ZnIn2S4/TiO2/Ag composite photocatalyst reached 715 mu mol.g(-1).h(-1), which was 2.7 times, 3.3 times, 3.8 times, 184 times and 518 times higher than those of ZnIn2S4/TiO2, ZnIn2S4/P25, TiO2 and P25, respectively. At the same time, by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UVVis diffuse reflection spectroscopy, the excellent performance of the composite catalyst was further demonstrated.
引用
收藏
页码:1571 / 1578
页数:8
相关论文
共 27 条
  • [1] Semiconductor-based Photocatalytic Hydrogen Generation
    Chen, Xiaobo
    Shen, Shaohua
    Guo, Liejin
    Mao, Samuel S.
    [J]. CHEMICAL REVIEWS, 2010, 110 (11) : 6503 - 6570
  • [2] Du XH, 2018, ACTA PHYS-CHIM SIN, V34, P414, DOI 10.3866/PKU.WHXB201708283
  • [3] ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE
    FUJISHIMA, A
    HONDA, K
    [J]. NATURE, 1972, 238 (5358) : 37 - +
  • [4] TiO2 photocatalysis and related surface phenomena
    Fujishima, Akira
    Zhang, Xintong
    Tryk, Donald A.
    [J]. SURFACE SCIENCE REPORTS, 2008, 63 (12) : 515 - 582
  • [5] Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route
    Gou, Xinglong
    Cheng, Fangyi
    Shi, Yunhui
    Zhang, Li
    Peng, Shengjie
    Chen, Jun
    Shen, Panwen
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (22) : 7222 - 7229
  • [6] GU L H., 2019, CHINA DYEING FINISHI, V45, P42
  • [7] Guang Y, 2017, APPL CATAL B, V219, P611
  • [8] In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution
    Huang, Kelei
    Li, Chunhu
    Meng, Xiangchao
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 580 : 669 - 680
  • [9] Photocatalytic activity of transition-metal-loaded titanium(IV) oxide powders suspended in aqueous solutions:: Correlation with electron-hole recombination kinetics
    Ikeda, S
    Sugiyama, N
    Pal, B
    Marcí, G
    Palmisano, L
    Noguchi, H
    Uosaki, K
    Ohtani, B
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2001, 3 (02) : 267 - 273
  • [10] Bifunctional heterogeneous catalysts for selective epoxidation and visible light driven photolysis: Nickel oxide-containing porous nanocomposite
    Kim, Tae Woo
    Hwang, Seong-Ju
    Jhung, Sung Hwa
    Chang, Jong-San
    Park, Hyunwoong
    Choi, Wonyong
    Choy, Jin-Ho
    [J]. ADVANCED MATERIALS, 2008, 20 (03) : 539 - +