High-pressure TiO2-II polymorph as an active photocatalyst for CO2 to CO conversion

被引:42
作者
Akrami, Saeid [1 ]
Watanabe, Monotori [2 ]
Ling, Tan Hui [3 ]
Ishihara, Tatsumi [2 ,3 ]
Arita, Makoto [4 ]
Fuji, Masayoshi [1 ,5 ]
Edalati, Kaveh [2 ]
机构
[1] Nagoya Inst Technol, Dept Life Sci & Appl Chem, Tajimi 5070071, Japan
[2] Kyushu Univ, WPI, Int Inst Carbon Neutral Energy Res WPI I2CNER, Fukuoka 8190395, Japan
[3] Kyushu Univ, Fac Engn, Dept Appl Chem, Fukuoka 8190395, Japan
[4] Kyushu Univ, Fac Engn, Dept Mat Sci & Engn, Fukuoka 8190395, Japan
[5] Nagoya Inst Technol, Adv Ceram Res Ctr, Tajimi 5070071, Japan
关键词
Titanium oxide; Columbite phase; High-pressure torsion (HPT); Photocatalyst; Photocatalytic CO2 conversion; HYDROGEN GENERATION; CHARGE SEPARATION; DOPED TIO2; REDUCTION; ANATASE; PHASE; SOLAR; TORSION; DIOXIDE; PHOTOLUMINESCENCE;
D O I
10.1016/j.apcatb.2021.120566
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rutile and anatase titanium oxide phases are widely used for photocatalytic CO2 conversion, and there have been significant attempts to improve their activity by various chemical methods. In this study, we show that the nanocrystalline high-pressure TiO2-II polymorph, synthesized by a high-pressure technique, shows higher photocurrent and better photocatalytic activity for CO2 to CO conversion compared to the anatase phase. The photocatalytic activity of material is further enhanced by thermal annihilation of oxygen vacancies generated in the bulk of TiO2-II during the high-pressure treatment. The high potential of TiO2-II phase for CO2 conversion is discussed based on the light absorbance, band structure, charge carrier mobility and CO2 adsorption.
引用
收藏
页数:12
相关论文
共 72 条
[1]   Wafer-Level Artificial Photosynthesis for CO2 Reduction into CH4 and CO Using GaN Nanowires [J].
AlOtaibi, Bandar ;
Fan, Shizhao ;
Wang, Defa ;
Ye, Jinhua ;
Mi, Zetian .
ACS CATALYSIS, 2015, 5 (09) :5342-5348
[2]   Light-induced charge separation in anatase TiO2 particles [J].
Berger, T ;
Sterrer, M ;
Diwald, O ;
Knözinger, E ;
Panayotov, D ;
Thompson, TL ;
Yates, JT .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (13) :6061-6068
[3]   Titanium Dioxide (Anatase and Rutile): Surface Chemistry, Liquid Solid Interface Chemistry, and Scientific Synthesis of Supported Catalysts [J].
Bourikas, Kyriakos ;
Kordulis, Christos ;
Lycourghiotis, Alexis .
CHEMICAL REVIEWS, 2014, 114 (19) :9754-9823
[4]   Time-Dependent Photoluminescence of Nanostructured Anatase TiO2 and the Role of Bulk and Surface Processes [J].
Bruninghoff, Robert ;
Wenderich, Kasper ;
Korterik, Jeroen P. ;
Mei, Bastian T. ;
Mul, Guido ;
Huijser, Annemarie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (43) :26653-26661
[5]   Titanium dioxide/carbon nitride nanosheet nanocomposites for gas phase CO2 photoreduction under UV-visible irradiation [J].
Crake, Angus ;
Christoforidis, Konstantinos C. ;
Godin, Robert ;
Moss, Benjamin ;
Kafizas, Andreas ;
Zafeiratos, Spyridon ;
Durrant, James R. ;
Petit, Camille .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 242 :369-378
[6]  
Davydov A.A., 1990, Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides
[7]   Mass transfer limitations in photocatalytic reactors employing titanium dioxide suspensions - I. Concentration profiles in the bulk [J].
de los Milagros Ballari, Maria ;
Brandi, Rodolfo ;
Alfano, Orlando ;
Cassano, Alberto .
CHEMICAL ENGINEERING JOURNAL, 2008, 136 (01) :50-65
[8]  
Delhez R., 1995, The Reitveld Method, P132
[9]   Low-temperature anatase-to-rutile phase transformation and unusual grain coarsening in titanium oxide nanopowders by high-pressure torsion straining [J].
Edalati, Kaveh ;
Wang, Qing ;
Razavi-Khosroshahi, Hadi ;
Emami, Hoda ;
Fuji, Masayoshi ;
Horita, Zenji .
SCRIPTA MATERIALIA, 2019, 162 :341-344
[10]   Review on Recent Advancements in Severe Plastic Deformation of Oxides by High-Pressure Torsion (HPT) [J].
Edalati, Kaveh .
ADVANCED ENGINEERING MATERIALS, 2019, 21 (01)