An extremal problem on the potentially wheel graph sequences

被引:0
作者
Chen, Gang [1 ,2 ]
Zhang, Qiang [1 ]
机构
[1] Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China
[2] Ningxia Univ, Dept Math, Ningxia 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
graph; degree sequence; potentially W-r-graphic sequence; LEHEL CONJECTURE; REALIZATION; JACOBSON; ERDOS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Gould, Jacobson and Lehel considered a variation of the classical Turan-type extremal problems: for a given graph H, determine the smallest even integer sigma(H,n) such that every n-term graphic sequence pi = (d(1), d(2),...,d(n)) with sigma(pi) = d(1) + d(2) + ... + d(n) >= sigma(H,n) has a realization G containing H as a subgraph. In this paper, we determine the values of sigma(W-r,n) for r >= 6 and n sufficiently large, where Wr is the wheel graph on r vertices.
引用
收藏
页码:3 / 13
页数:11
相关论文
共 15 条
[1]  
Chen G., 2003, J. XuZhou Normal University, V21, P5
[2]  
Erdos P., 1960, Mat. Lapok (N.S.), V11, P264
[3]  
Erdos P., 1991, Graphs realizing the same degree sequence and their respective clique numbers, graph theory, combinatorics and applications, Vi, P439
[4]  
Gould R.J., 1999, Combinatorics, graph theory, and algorithms, V2, P451
[5]  
Kleitman D. J., 1973, Discrete Mathematics, V6, P79, DOI 10.1016/0012-365X(73)90037-X
[6]  
Lai C., 1997, J. ZhangZhou Teach. Coll. Nat. Sci, V11, P27
[7]  
Lai C., 2004, J. Combin. Math. Combin. Comput, V49, P57
[8]   The threshold for the Erdos, Jacobson and Lehel conjecture to be true [J].
Li, Jiong Sheng ;
Yin, Jian Hua .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) :1133-1138
[9]   The Erdos-Jacobson-Lehel conjecture on potentially Pk-graphic sequence is true [J].
Li, JS ;
Song, ZX ;
Luo, R .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (05) :510-520
[10]   An extremal problem on the potentially Pk-graphic sequences [J].
Li, JS ;
Song, ZX .
DISCRETE MATHEMATICS, 2000, 212 (03) :223-231