Quantum memory with millisecond coherence in circuit QED

被引:280
作者
Reagor, Matthew [1 ]
Pfaff, Wolfgang
Axline, Christopher
Heeres, Reinier W.
Ofek, Nissim
Sliwa, Katrina
Holland, Eric
Wang, Chen
Blumoff, Jacob
Chou, Kevin
Hatridge, Michael J.
Frunzio, Luigi
Devoret, Michel H.
Jiang, Liang
Schoelkopf, Robert J.
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
关键词
QUBIT; CAVITIES; PHOTONS; STATE; MODE;
D O I
10.1103/PhysRevB.94.014506
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Significant advances in coherence render superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by Josephson-junction-based artificial atoms, while maintaining superior coherence. We demonstrate a superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for storage of quantum superpositions in a resonator on the millisecond scale, while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. This extends the maximum available coherence time attainable in superconducting circuits by almost an order of magnitude compared to earlier hardware. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing in Josephson-junction-based quantum circuits.
引用
收藏
页数:8
相关论文
共 48 条
[1]  
Axline C., ARXIV160406514
[2]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[3]   Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits [J].
Barends, R. ;
Wenner, J. ;
Lenander, M. ;
Chen, Y. ;
Bialczak, R. C. ;
Kelly, J. ;
Lucero, E. ;
O'Malley, P. ;
Mariantoni, M. ;
Sank, D. ;
Wang, H. ;
White, T. C. ;
Yin, Y. ;
Zhao, J. ;
Cleland, A. N. ;
Martinis, John M. ;
Baselmans, J. J. A. .
APPLIED PHYSICS LETTERS, 2011, 99 (11)
[4]   Phase-preserving amplification near the quantum limit with a Josephson ring modulator [J].
Bergeal, N. ;
Schackert, F. ;
Metcalfe, M. ;
Vijay, R. ;
Manucharyan, V. E. ;
Frunzio, L. ;
Prober, D. E. ;
Schoelkopf, R. J. ;
Girvin, S. M. ;
Devoret, M. H. .
NATURE, 2010, 465 (7294) :64-U70
[5]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[6]   Demonstration of superconducting micromachined cavities [J].
Brecht, T. ;
Reagor, M. ;
Chu, Y. ;
Pfaff, W. ;
Wang, C. ;
Frunzio, L. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
APPLIED PHYSICS LETTERS, 2015, 107 (19)
[7]   Quantum dynamics of an electromagnetic mode that cannot contain N photons [J].
Bretheau, L. ;
Campagne-Ibarcq, P. ;
Flurin, E. ;
Mallet, F. ;
Huard, B. .
SCIENCE, 2015, 348 (6236) :776-779
[8]   Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates [J].
Bruno, A. ;
de Lange, G. ;
Asaad, S. ;
van der Enden, K. L. ;
Langford, N. K. ;
DiCarlo, L. .
APPLIED PHYSICS LETTERS, 2015, 106 (18)
[9]   Using a qubit to measure photon-number statistics of a driven thermal oscillator [J].
Clerk, A. A. ;
Utami, D. Wahyu .
PHYSICAL REVIEW A, 2007, 75 (04)
[10]   Demonstration of a quantum error detection code using a square lattice of four superconducting qubits [J].
Corcoles, A. D. ;
Magesan, Easwar ;
Srinivasan, Srikanth J. ;
Cross, Andrew W. ;
Steffen, M. ;
Gambetta, Jay M. ;
Chow, Jerry M. .
NATURE COMMUNICATIONS, 2015, 6