ON THE FRACTIONAL MEAN-VALUE THEOREM

被引:6
作者
Guo, Peng [1 ]
Li, Changpin [1 ]
Chen, Guanrong [2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 05期
关键词
Fractional calculus; mean-value theorem; Riemann-Liouville; Caputo; generalized Taylor's formula;
D O I
10.1142/S0218127412501040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we derive a fractional mean-value theorem both in the sense of Riemann-Liouville and in the sense of Caputo. This new formulation is more general than the generalized Taylor's formula of Kolwankar and the fractional mean-value theorem in the sense of Riemann-Liouville developed by Trujillo.
引用
收藏
页数:6
相关论文
共 17 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[3]  
[Anonymous], 1997, FRACTALS FRACTIONAL
[4]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[5]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[6]  
Das S., 2008, Functional Fractional Calculus for System Identification and Controls
[7]  
Gorenflo R., 1998, FRACT CALC APPL ANAL, V1, P167
[8]   Local fractional Fokker-Planck equation [J].
Kolwankar, KM ;
Gangal, AD .
PHYSICAL REVIEW LETTERS, 1998, 80 (02) :214-217
[9]   Holder exponents of irregular signals and local fractional derivatives [J].
Kolwankar, KM ;
Gangal, AD .
PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (01) :49-68
[10]   Remarks on fractional derivatives [J].
Li, Changpin ;
Deng, Weihua .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) :777-784